DOI QR코드

DOI QR Code

Fabrication and Characterization of Macro/Mesoporous SiC Ceramics from SiO2 Templates

실리카 주형을 이용한 메크로/메조다공성 탄화규소 세라믹의 제조와 비교특성

  • ;
  • Hao Wang (Key Lab of Ceramic Fiber and Composites, National University of Defense Technology, Chin) ;
  • ;
  • 홍난영 (충남대학교 신소재연구소) ;
  • ;
  • 박경훈 (충남대학교 공과대학 정밀공업화학) ;
  • 김동표 (충남대학교 공과대학 정밀공업화학과)
  • Published : 2004.07.01

Abstract

Macroporous SiC with pore size 84∼658 nm and mesoporous SiC with pore size 15∼65 nm were respectively prepared by infiltrating low viscosity preceramic polymer solutions into the various sacrificial templates obtained by natural sedimentation or centrifuge of 20∼700 nm silica sol, which were subsequently etched off with HF after pyrolysis at 1000∼140$0^{\circ}C$ in an argon atmosphere. Three-dimensionally long range ordered macroporous SiC ceramics derived from polymethylsilane (PMS) showed surface area 584.64$m^2$g$^{-1}$ when prepared with 112nm silica sol and at 140$0^{\circ}C$, whereas mesoporous SiC from polycarbosilane (PCS) exhibited the highest surface area 619.4 $m^2$g$^{-1}$ with random pore array when prepared with 20-30 nm silica sol and at 100$0^{\circ}C$. Finally, tile pore characteristics of porous SiC on the types of silica sol, polymers and pyrolytic conditions were interpreted with the analytical results of SEM, TEM, and BET instruments.

입자크기가 20∼700nm인 구형 실리카입자의 자연침강 혹은 원심분리법으로 제조한 주형체에 탄화규소 전구체 polymethyl-silane (PMS) 혹은 polycarbosilane (PCS) 고분자 용액을 함침한다음, 가교 및 1000∼140$0^{\circ}C$ 열분해하고 마지막으로 불산 (HF)으로 실리카를 식각하여 84∼658nm 기공이 3차원으로 정렬된 메크로다공성(macroporous) 탄화규소 세라믹과 불규칙적인 15∼65nm 기공을 가진 메조다공성(mesoporous) 탄화규소 세라믹을 제조하였다. 전자는 112nm 실리카 입자 주형체를 사용하여 140$0^{\circ}C$로 처리했을 때, 표면적 584.64$m^2$g$^{-1}$을 나타낸 반면, 후자는 20-30nm 실리카 주형체를 사용하여 100$0^{\circ}C$로 처리하였을때, 최대의 표면적 619.4$m^2$g$^{-1}$를 나타내었다, 이와 같이 사용된 실리카 입자, 고분자 전구체, 그리고 열처리 조건에 따른 기공특성을 SEM. TEM 및 BET으로 분석 설명하였다.

Keywords

References

  1. Nature v.389 Porous Silica via Colloidal Crystallization O. D. Velev;T. A. Jede;R. F. Lobo;A. M. Lenhoff
  2. Carbon v.39 Reproducible Production of Nanoporous Carbon Membranes J. S. Yu;S. B. Yoon;G. S. Chai https://doi.org/10.1016/S0008-6223(01)00024-0
  3. Chem. Mater. v.12 General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion H. Yan;C. F. Blanford;B. T. Holland;W. H. Smyrl;A. Stein https://doi.org/10.1021/cm9907763
  4. J. Mater. Chem. v.11 no.3 Electrochemical Syntheses of Highly Ordered Macroporous Conducting Polymers Grown Around Self-Assembled Colloidal Templates P. N. Bartlett;P. R. Birkin;M. A. Ghanem;C. S. Toh https://doi.org/10.1039/b006992m
  5. Nature v.414 Self-Assembly Lights Up J. D. Joannopoulos https://doi.org/10.1038/35104718
  6. Adv. Mater. v.13 Titanium Dioxide Tubes from Sol-Gel Coating of Electrospun Polymer Fibers R. A. Caruso;J. H. Schattka;A. Greiner https://doi.org/10.1002/1521-4095(200110)13:20<1577::AID-ADMA1577>3.0.CO;2-S
  7. Adv. Funct. Mater. v.12 Silica Films with Bimodal Pore Structure Prepared by Using Membranes as Templates and Amphiphiles as Porogens R. A. Caruso;M. Antonietti https://doi.org/10.1002/1616-3028(20020418)12:4<307::AID-ADFM307>3.0.CO;2-9
  8. Adv. Mater. v.12 Porous Metals from Colloidal Templates K. M. Kulinowski;P. Jiang;H. Vaswani;V. L. Colvin https://doi.org/10.1002/(SICI)1521-4095(200006)12:11<833::AID-ADMA833>3.0.CO;2-X
  9. J. Microporous Mater. v.4 Carbogenic Molecular Seives : Synthesis Properties and Applications H. C. Foley https://doi.org/10.1016/0927-6513(95)00014-Z
  10. Adv. Mater. v.13 Pattening Porous Oxides within Microchannel Networks P. D. Yang;A. H. Rizvi;B. Messer;B. F. Chmelka;G. M. Whitesides;G. Stucky https://doi.org/10.1002/1521-4095(200103)13:6<427::AID-ADMA427>3.0.CO;2-C
  11. Chem. Comm. v.22 Low-Cost and Facile Synthesis of Mesocellular Carbon Foams J. Lee;K. Sohn;T. Hyeon
  12. Carbon v.41 The effect of Silica Template Structure on the Pore Structure of Mesoporous Carbons S. Han;K. T. Lee;S. M. Oh;T. Hyeon https://doi.org/10.1016/S0008-6223(02)00439-6
  13. Angew. Chem., Int. Ed. Engl. v.36 $Ba_2Nd_7Si_{11}N_{23}$ - a Nitridosilicate with a Zeolite-Analogous Si-N Structure H. Huppertz;W. Schnick https://doi.org/10.1002/anie.199202131
  14. Colloids Surf v.50 Preparation of Silica Nanoparticles in a Non-Ionic Reverse Micellar System K. O. Asare;F. J. Arriagada https://doi.org/10.1002/anie.199726511
  15. J. Mater. Sci. Lett. v.19 Polymethylsilane Post-Treated with a Polyborazine Promotors as a Precursor to SiC with High Ceramic Yield D. P. Kim https://doi.org/10.1016/0166-6622(90)80273-7
  16. Chem. Mater. v.11 Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks B. J. Melde;B. T. Holland;C. F. Blanford;A. Stein https://doi.org/10.1023/A:1006754428380
  17. Adv. Mater. v.13 Ordered Mesoporous Carbons R. Ryoo;S. H. Joo;M. Kruk;M. Jaroniec https://doi.org/10.1021/cm9903935
  18. J. Am. Ceram. Soc. v.84 Micro-/Macroporous Ceramics from Preceramic Precursors H. Schmidt;D. Koch;G. Grathwohl https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  19. J. Phys. Chem. B. v.104 Block-Copolymer-Templated Ordered Mesoporous Silica : Array of Uniform Mesopores or Mesopore-Micropore Network? R. Ryoo;C. H. Ko;M. Kruk;V. Antochshuk;M. Jaroniec https://doi.org/10.1111/j.1151-2916.2001.tb00997.x
  20. Thin Solid Films. v.389 Boron-Rich Boron Nitride (BN) Films Prepared by a Single Spin-Coating Process of a Polymeric Precursor J. G. Kho;K. T. Moon;G. Nouet;P. Ruterana;D. P. Kim https://doi.org/10.1021/jp002597a
  21. J. Mater. Chem. v.12 no.4 Preparation of Hybrid Polymer as a Near-Stoichiometric SiC Precursor by Blending of Polycarbosilane and Polymethysilane F. Cao;D. P. Kim;X. D. Li https://doi.org/10.1016/S0040-6090(01)00760-X
  22. Chem. Commun. v.14 Fabrication of Macroporous SiC from Templated Preceramic Polymers I. K. Sung;S. B. Yoon;J. S. Yu;D. P. Kim https://doi.org/10.1039/b106994m
  23. Angew. Chem., Int. Ed. Engl. v.31 W. Schnick;J. Lucke https://doi.org/10.1002/anie.199202131