DOI QR코드

DOI QR Code

Ceramic Foams by the Self-Blowing of Polymer

고분자의 자체발포를 이용한 세라믹 다공질체

  • 백종원 (성균관대학교 재료공학과) ;
  • 김득중 (성균관대학교 재료공학과)
  • Published : 2004.07.01

Abstract

Ceramic foams were prepared by a self-blowing process of a polysiloxane with A1$_2$O$_3$ as a filler. The release of water and ethanol vapor during the condensation reaction of the polymer triggered the pores in the polymer melt. The size. interconnectivity and shape of the pores in the ceramic foams were strongly dependent on the viscosity of the polymer melt, which could be varied by the content and size oi the filler. When the content of the filler inceased and the size of the filler decreased. the size of the pores were decreased and the thickness between the pores were increased. In the addition, the viscosity of polymer melt increased by the pretreatment at 130$^{\circ}C$ for Ire intermolecular cross linking thereby stabilizing the foam structure. The density and compressive strength of the ceramic foams were affected by the heating rate during the blowing process.

폴리실록산 고분자의 자가 발포과정을 이용하여 세라믹 다공질체를 제조하였다. 고분자가 가교반응을 하는 과정에서 발생하는 물과 알콜 증기를 이용하면 고분자 용융액 내에 기공을 형성할 수 있다. 세라믹 다공질체 내의 기공의 크기와 모양은 고분자 용융액의 점도에 따라 크게 달라진다. 충진제인 A1$_2$O$_3$ 함량이 증가하면 기공 크기는 감소하며 이는 A1$_2$O$_3$의 입자크기가 감소하여도 비슷한 양상을 보였다. 고분자 용융액의 점도는 고분자의 가교반응정도에 따라서도 영향을 받는다. 발포 전에 13$0^{\circ}C$에서 열처리를 하면 점도는 증가하며 다공질체의 기공 안정성은 증가한다. 제조된 세라믹 다공질체의 밀도와 압축강도는 발포과정에서의 승온속도에 따라 다른 값을 보였다.

Keywords

References

  1. Bull. Am. Ceram. Soc. v.76 Gelcasting Foams for Porous Ceramics P. Sepulveda
  2. Bull. Am. Ceram. Soc. v.71 Processing of Porous Ceramics J. Saggio-Woyansky;C. E. Scott;W. P. Minnear
  3. US Patent 4,547,469 G. Jackson;W. Meredith
  4. J. Mater. Sci. v.30 Processing of Mcirocellular SiC Foams. Part I : Curing Kinetics of Polycarbosilane in Air T. Fitzgerald;A. Mortensen https://doi.org/10.1007/BF01178440
  5. J. Mater. Sci. v.30 Processing of Microcellular SiC Foams, Part II:Ceramic Foam Formation T. J. Fizgerald;V. J. Michaud;A. Mortensen
  6. Bull. Am. Ceram. Soc. v.62 no.8 Ceramics From Polymer Pyloysis R. W. Rice
  7. Ann. Rev. Mat. Sci. v.14 Ceramics via Polymer Pyrolysis K. J. Wynne https://doi.org/10.1146/annurev.ms.14.080184.001501
  8. Ads. Mat. Ceramics from Organometallic Polymer M. Peukert;T. Vaahs;M. Brueck
  9. J. Sol-Gel Sci. Tech. v.13 Silicon Oxycarbide Foams from a Silicone Preceramic Polymer and Polyurethane P. Colombo;M. Griffoni https://doi.org/10.1023/A:1008604800737
  10. Ceram. Trans. v.108 Processing of Ceramic Foam by Pyrolysis of Filler Containing Phenylmethy1 Polysiloxane Precursor T. Gambaryan-Roisman;M. Scheffler;P. Buhler;P. Greil
  11. Euromat 99, Ceramics Processing, Reliability, Tribology and Wear v.12 Formation and Properties of Poly(siloxane) Derived Ceramic foam T. Gembaryan-Roisman;M. Scheffler;T. Takahashi;P. Buhler;P. Greil;G. Muller(ed.) https://doi.org/10.1002/3527607293.ch42

Cited by

  1. Flexural Strength of Polysiloxane-Derived Strontium-Doped SiOC Ceramics vol.52, pp.1, 2015, https://doi.org/10.4191/kcers.2015.52.1.61