=& 04-29-7A-10

FLEA3}3| =87 '04-7 Vol.29 No.7A

BlH B39 oF Ao n|E B dyz|E

* *

Z

1= ‘0

2 E, YA T

’

71 A £

*

AN A A

L= SN B

Protection Algorithm for Error Prone Bit Positions of
Turbo Codes

Wangrok Oh*, Kyungwhoon Cheun* Regular Member, Jinwoo Kim*,
Kyeongcheol Yang*, Regular Member

ABSTRACT

In this paper, we propose a simple protection scheme for error prone bit positions of turbo codes using the

error detection capability of the CRC, which is almost always employed in practical systems. The proposed

scheme based on bit flipping with CRC offers flexibility on selecting the level of protection. Also, not having

send additional parity bits or discarding useful bit positions, it offers the best error performance for a given level

of protection.
I. Introduction

Turbo codes, though exhibiting remarkable
performance at low SNRs due to spectral
thinning, suffer from the so called error floor at
moderate to high SNRs due to relatively small
free distances [1]. The structure of the assumed
rate 1/3 parallel concatenated turbo encoder is
shown in Fig. 1. The two constituent recursive
systematic convolutional (RSC) codes are identical
with generator (7,5)s and each frame contains N
bits including CRC bits. The CRC is nearly
always employed in practical applications in order
to guarantee data integrity to the upper protocol
layer or to indicate a decoding failure at the
physical layer [3]. It is also quite useful as a
decoder stopping [4]. We
assume that the employed CRC is sufficiently

iteration criterion
powerful that essentially all errors are detected.
Also, both constituent codes are terminated using
the termination scheme proposed in [2].

The decoder employed is basically the standard

iterative MAP algorithm with a

maximum

(1

and an additional

preset
iteration number
process called bit flipping. If a frame passes the
CRC test after any given decoder iteration, the
iteration

decoder is stopped. The

operation is activated when a frame fails the CRC

bit flipping

even after the maximum preset number of decoder
iterations. Given a list of error prone bit position
(EPBP) npatterns, the decoder the bits
corresponding to each pattern and rechecks the
CRC until the CRC check is successful or the
decoder runs out of EPBP patterns.

flips

Information Systematic
bits CRC Symbols
Encoder
Parity
RSC1 Symbols Parallel Code
5 to Symbols
5% Serial [™
Converter
Parity
Interleaver RSC2 Symbols
I B .9,

Fig. 1. The structure of the assumed rate 1/3 parallel
concatenated turbo encoder.

* F3bgatisty 271285 (cheun@postech.ac.kr)

i o Ssstl el AKle] o5 SsUS.
ICCI $39=E

115

F=2AIE3) =54 "04-7 Vol.29 No.7A

The error floor and the existence of EPBPs are
mainly due to specific small weight (usually two
and three) input patterns that generate low weight
codewords at both of the two RSC outputs. Also
contributing to the error floor, though to a lesser
degree, is the edge effect [5]. It is invoked by
input data patterns resulting in a trellis path
diverging from the all-zeros path at RSC1 near
the end of the frame being mapped to a similar
trellis paths at RSC2.

There have been several previous attempts
attacking the problem of EPBPs in (parallel
concatenated) turbo codes. One is due to Oberg
and Siegel [6] which simply discards the EPBPs,
ie., transmits dummy information bits in these bit
positions. This results in a reduction of code rate
and wasted energy in the discarded bit positions.
All other approaches are based on some form of
serial concatenation. In [7] and [8], high rate
BCH and the Reed-Solomon codes were
respectively used as outer codes to the turbo code
in order to lower the error floor. In [9],
Narayanan and Stiiber improved on the serial
concatenation schemes of [7] and [8] using a
scheme called selective concatenation. Here, extra
protection is provided only for those bit positions
identified as being error prone. Based on the fact
that EPBPs occur in fixed patterns corresponding
to nonzero bit positions resulting in low weight
codewords, Kim and Lee in [10] proposed only
protecting one representative bit position within
each EPBP patterns using single error correcting
BCH codes.

There are several shortcomings to the serial
concatenation methods. One obvious shortcoming
is the reduction in the code rate due to additional
parity bits that need to be transmitted, especiaily
for short frame sizes. Also, these schemes must
be designed into a system before deployment.
Hence, the level of protection, namely the size of
the EPBPs protected, is fixed and not adjustable
after deployment. Furthermore, with the scheme
proposed in [10], extra care must be taken in
selecting the particular bit position within the
EPBP pattern to be encoded, especially for short

776

frame sizes. This is due to the possibility that
some EPBPs occur in multiple EPBP patterns in
which case the single error correcting BCH code
fails and the scheme breaks down. The proposed
scheme based on bit flipping with CRC offers
flexibility that serial concatenation techniques do
not. Also, not having to send additional parity
bits or discard useful bit positions, it offers the
best error performance for a given set of EPBPs
protected.

Table 1. EPBP patterns for a set of randomly generated
interleavers for frame sizes N=128 and 1024.

N; =18 Ny = 1024
EPBP EPBP
patterns w | No patterns w | N
(73,74, 15) | 7] 1 (@30,433) | T,
(16,18,20) | 9] 2 (480, 483)
(66, 69) 0l 4 (97, 100)
10, 113) B3,380) |, | 6
(@B, 49) {417, 423)
(39, 45) 2] s (861, 867)
(51, 54) {680, 683)
(82, 83, 37). (915, 924) | 14| 9
@727 151 10 (978, 981)
o 5o
(03, 112) | 1, | 14 ([_(79%,806) |16 | 14
(108, 113) (921, 933)
(74, 75, 79), (934, 940)
(79, 32). {12, 18)
(37, 38, 39) {43, 58)
(59,60,67) | 1= | 20 (142, 148)
(%5, 89, 90) (333, 348)
(89, 90, 94) (337, 346)
94, 107, 108 (379, 390)
1,109 (643, 649)
10, 16) (705 708) | 8] %
{11, 23) (739, 745)
(25, 37) (845, 854)
(34, 46) 16] 29 || (%83, %92)
(86, 92) 594, 906)
Ew
114, 126 5, 1
{104, 105, 109), (1012, 1020) | 101 50
(144, 157, 161)
{186, 198)
(482, 485)
(513,522) | 20| 35
(577, 595)
(693, 629) |

II. System Description and
Numerical Results

The EPBP patterns for a set of randomly
generated interleavers for frame sizes N<=128 and
1024 are shown in Table 1. All

BRI ER £59 08 ok uE ue d1E

input patterns of weight one, two and three were
investigated. The resulting input EPBP patterns
are tabulated in an ascending order according to
the resulting codeword weights w up to 16 and
20 for Ny =128 and 1024, respectively. The EPBP
patterns corresponding to the aforementioned edge
effect are identified with the subscript ‘‘**’. The
accumulated number of codewords up to a
particular codeword weight, Nw are also shown
and the error prone bit positions that occur in
multiple EPBP patterns are underlined.

As described in Section I, the CRC is assumed
to detect all decoding errors with probability one.
Hence, if we decide to protect the first L EPBP
patterns in Table 1, it is guaranteed that the bit
flipping algorithm will correct all error patterns
corresponding to these entries. For example, if we
protect the first two entries in Table 1 for N;
=128, EPBP patterns resulting in codeword
weights 7 and 9 are eliminated. Since we have
only investigated input patterns of weight up to
three, we cannot claim that all codewords of
weight up to 9 have been eliminated for this
particular example. However, one may be
reasonably confident that codewords of small
weight are most likely generated by input patterns
of weight up to three. Hence, elimination of the
EPBP patterns corresponding to low weight
codewords will, in most cases, result in an
effective increase in the minimum distance of the
code.

The additional complexity associated with the
bit flipping algorithm is the memory required for
the EPBP pattern table and additional CRC
computations. The number of additional CRC
computations range from the minimum value of
one to the maximum value corresponding to the
size of the EPBP pattern table. However, for
sufficiently large SNRs, this number will be quite
small since most errors at relatively high SNRs
correspond to low weight codewords. In any
respect, the additional complexity required for the
bit flipping algorithm for a reasonable EPBP
pattern table size is negligible compared to the

10 o . T R : T

=
[
o
-
=3 4.
=10
107}
Wnin=0,10,12,13,14,15,16 " g
i i 4 A 1 h 1 1
05 2 2.5 3 35 4 45 s 55
Ey/No [dB]

Fig. 2. BER and FER performance of the bit flipping
algorithm for N=128.

complexity of the original iterative MAP decoder.
For the numerical results that follow, we take

the preset number of maximum decoder iterations
to be 4 and 8 for Ny =128 and 1024,
respectively.

107 e . . o

: —— BER
S : -—- FER

Conventional decodeér

BER / FER
<

3
B

-

CWiin=12,14,16,18,19,20
2?5 3
Ey/Ny [dB)

.

1 L5 2

1
35 4

Fig. 3. BER and FER performance of the bit flipping
algorithm for N=1024.

In Figs. 2-3, we have plotted the simulated
BER and the frame error rate (FER) curves for
frame sizes Ny =128 and 1024, respectively. The
channel is assumed to be an AWGN channel with
two-sided power spectral density No/2 with BPSK
modulation. The energy per bit, E, denotes the
received energy per each bit in the frame
including the CRC bits. The parameter Wpy, is
defined as wmin=w meaning that all EPBP patterns
in Table 1 up to codeword weight w-1 are
included in the decoder EPBP pattern table. We

T

22183 =F-4] "04-7 Vol.29 NoJA

observe clear gains that may be achieved with the
bit flipping algorithm, especially for the FER.
Unlike the serial concatenation schemes, the gains
shown in these figures are obtainable without any
increase in the required bandwidth. Also, the
decoder may choose any of the shown BER/FER
curves (or curves in between for that matter) at
will by controlling the size of the EPBP pattern
decoder. Clearly,
increasing the size of the EPBP pattern table at

table maintained at the

the decoder monotonically improves the error
performance of the decoder. However, in order to
achieve wmy, above a certain value, e.g., if we
include EPBP patterns corresponding to input
patterns with weight larger than 3, the required
size of the EPBP pattern table quickly becomes
unreasonable.

Table 2. Average number of additional CRC check
operations performed for the bit flipping algorithm for two
EPBP pattemn table sizes.

N, =128 N; = 104
2 EPBP 20 EPBP 2 EPBP 30 EPBP
% [dB] patterns patterns patterns patterns

Gonin = 10 Wi = 16 Winin = 12 Winin = 20
1.0 1.98 18.99 1.94 22.68
20 1.89 15.4 1.79 8.86
3.0 1.56 7.24 1.70 4.42
4.0 1.31 2.87 .
5.0 1.16 1.60

Table 2 shows the average number of
additional CRC check operations performed for
the bit flipping algorithm at various values of
SNRs for two EPBP pattern table sizes. Note that
at sufficiently large SNRs, the difference in the
actual number of CRC checks performed is not
very sensitive to the EPBP pattern table size and
is quite small as expected.

Dummy bit insertion scheme of Oberg covers
the first two EPBP patterns in Table 1,
Narayanan’s scheme covers the first seven EPBP
patterns in Table 1 with a (31,16,3) BCH code,
Kim’s scheme covers the first four EPBP paiterns
in Table 1 with a (74,1) BCH code. Bit
flipping algorithm covers all 29 EPBP patterns in
Table 1.

The comparison results of the average BER
performance of varicus EPBP protection schemes

778

are shown in Figs. 4-5. The performance of
Narayanan [9] and Kim’s [10] selective serial
concatenation schemes along with the dummy bit
insertion scheme of Oberg [6] are shown with
those of the conventional decoder and the
proposed bit flipping algorithm. The energy per
bit for the selective serial concatenation and the
dummy bit insertion schemes are appropriately
normalized in order to take into account the
parity/dummy bits that need to be transmitted.
The number of dummy bit positions for Oberg’s
scheme and the code parameters for the two
selective serial concatenation. schemes were
optimized so as to minimize the BER near 10°.
For the bit flipping scheme, the size of the EPBP
pattern table is assumed to be 29 for Ny =128
and 35 for Ny =1024, corresponding to Wmin=17
and wma=21, respectivelyl. As expected, the
proposed bit flipping algorithm outperforms all
other algorithms at all SNRs.

T —T — v

. - =~ Conventional decoder | |

10 0—© Chberg [6)
Narayanan [9]
N @3—8 Kim [10]

107k —— Bit flipping
210
w
m

10

10k

107 . i

3 35
Eip/No [dB}

Fig. 4. BER performance of EPBP protection schemes.
Frame size N#~128. Dummy bit insertion scheme of Oberg
covers the first two EPBP patierns in Table 1, Narayanan’s
scheme covers the first seven EPBP patterns in Table 1
with a (31,16,3) BCH code, Kim’s schemes covers the first
4 EPBP patterns in Table 1 with a (7,4,1) BCH code. Bit
flipping algorithm covers all 35 EPBP patterns in Table 1.

Y Note that other than the proposed bit flipping scheme,
the increase in the number of EPBPs protected does not
directly imply an improvement in” the resulting error
performance since more parity bits or dummy bits need
to be transmitted.

E=F/ER B35 0% Ao HE B duE

. Conclusions

In this paper, we proposed the
protection scheme for error prone bit positions of

simple

turbo codes using the error detection capability of
the CRC. The proposed scheme based on bit
flipping with CRC offers flexibility on selecting
the level of protection. Also, not having send
additional parity bits or discarding useful bit
positions, it offers the best esror performance for

a given level of protection.

T " T T T

.| === Conventional decoder
O—© Oberg [6]
:4B—A Narayanan [9)
B—8 Kim [10]

-—— Bit flipping

2 2:5
Ey/No [dB]

Fig. 5. BER performance of EPBP protection schemes.
Frame size N=1024. Dummy bit insertion scheme of Oberg
covers the first 9 EPBP patterns in Table 1, Narayanan and
Kim’s schemes both cover the first 26 EPBP patterns in
Table 1 with a (63,51,3) and (31,26,1) BCH codes,
respectively. Bit flipping algorithm covers all 35 EPBP
patterns in Table 1.

References
[1] B. Vucetic and J. Turbo
Codes-Principles and Applications, Boston:
Kluwer Academic Publishers, 2000.
[2] 3GPP, 3G Technical Specification,

Multiplexing and Channel Coding, 25.212

Yuan,

v4.4.0, 2001.
[31 A. Shibutani, H. Suda and F. Adachi,
“Reducing average number of turbo

decoding iterations,” Electron. Lett., vol. 35,
pp. 701-702, Apr. 1999.

{4] D. Divsalar and F. Pollara, "Turbo codes
for PCS applications,” in Proc. IEEE Int.

(3]

[6]

(7]

(8]

B

(10]

Conf. Commun., Jun. 1995, pp. 54-59.

J. Hokfelt, O. Edfors and T. Maseng, “A
survey on trellis termination alternative for
turbo codes,” in Proc. IEEE Vehicular
Tech. Conf., May 1999, pp. 2225-2229.

M. Oberg and P. H. Siegel, “Lowering the
error floor for turbo codes,” in Proc. Ist
Int. Symp. Turbo Codes & Related Topics,
Nov. 1996, pp. 204-207.

J. D. Anderson, "Turbo codes extended
with outer BCH code,” Electron. Lett., vol.
32, pp. 2059-2060, Oct. 1996.

D. J. Costello and G. Meyerhans,
“Concatenated turbo codes,” in Proc. IEEE
Int. Symp. Info. Theory and Appl, Sept.,
1996, pp. 571-574.

K. R. Narayanan and G. L. Stlber,
"Selective serial concatenation of
codes,” IEEE Commun. Lert., vol.
136-140, Sept., 1997.

H. Kim and P. Lee, “Performance of turbo
codes with a single-error correcting BCH

turbo
1, pp.

outer code,” in Proc. IEEE Int. Symp. on
Info. Theory, Jun. 2000, pp. 369.

119

P EAEI=FA] "04-7 Vol29 No7A

2 & ZE(Wangrok Oh)

1199941 29 : ¥3Fsta
A7 3E 29
1997 24 : E3Faesta
AR FAlFsta} At
2003 8% : LTI
A=A 71g5) whal

19974 39~20004 2%: T3Ealojstn
A REAAFA AdTd
<Rl olF%A, FASEA, HAF ¥E

H B #F(Kyungwhoon Cheun) A3
19853 24 : Al gt
A3t 24

1987'1 : Univ. of Michigan,
Ann Arbor
A\ AFE TS A
1989'3 : Univ. of Michigan,
Ann Arbor
W\ AFE T)
19891 74~1991'd 74 : Univ. of Delaware,
Newark %17|583} a5
1991 74~ : FFAEaL A7 |53
2, Falp, Jg
2000 12-4~2001%d 1249 : Univ. of California,
San Diego HNE-IF
<TlEol BA0lE, o534, IEEA,
HER ¥3, A3 FE

780

4 Tl fJinwoo Kim)

001d 24 : gl
A3 24
0039 24 : Z3TIEty
A7 g} AAp
2003 3Y~AW: LG A=}

<R o584, BEF FE

2F A B(Kyeongcheol Yang) 39

e - 19864 29 : A]goshal
e 24

19883 : A& oEha
AR Al

199213 129 : Univ. of

84 Southern California

A 7135 what

1993 3¥-~1999'3 24 : Feuista
AxgAFE T} 20

19994 24~3A : 3T A7 [FE S}
T

<Rl H3FolE, A7 3, HEF FF

TA4A, HRE3

