76 Abhijit S. Pandya , Ralph D’'Souza and Gyoo-Yong Chae : Direct Sequence Spread Spectrum Transmitter using FPGAs

Direct Sequence Spread Spectrum
Transmitter using FPGAs

Abhijit S. Pandya, Ralph D’Souza and Gyoo-Yong Chae, Member, KIMICS

Abstract—The DS-SS (Direct Sequence Spread Spectrum)
transmitter is part of a low data rate (~150 kbps - burst
rate and 64 bps - average data rate) wireless communication
system. It is traditionally implemented using Digital Signal
processing chip (DSP). However, with rapid increase in
variety of services through cell phones, such as, web
access, video transfer, online games etc. demand for
higher rate is increasing steadily. Since the chip rate and
thereby the sampling rate requirements of the system are
fairly high, the transmitter should implemented using
Field programmable Gate Arrays FPGAs instead of a DSP.
This paper shows the steps taken to get a working prototype
of the transmitter unit on a FPGA based platform.

Index Terms—DS-SS (Direct Sequence Spread Spectrum),
DSP, FPGA

L. INTRODUCTION

Spread spectrum was first developed for use by the
military because it uses wideband signals that are difficult
to detect and that resist attempts at jamming. In recent
years, researchers have turned their attention to applying
spread spectrum processes for commercial purposes,
especially in local area wireless networks.

Direct sequence spread spectrum [1], also known as
direct sequence code division multiple access (DS-
CDMA), is one of two approaches to sequence spread
modulation for digital signal transmission over the
airwaves. In direct sequence spread spectrum, the stream
of information to be transmitted is divided into small
pieces, each of which is allocated across to a frequency
channel across the spectrum. A data signal at the point of
transmission is combined with a higher data-rate bit
sequence (also known as a chipping code) that divides
the data according to a spreading ratio. The redundant
chipping code helps the signal resist interference and
also enables the original data to be recovered if data bits
are damaged during transmission.

With the emergence over the past few years of larger
gate count FPGA devices, the implementation of wideband

Manuscript received May 25, 2004.

A. 8. Pandya is a Professor at Dept of Comp. Sci. and Engg.,
Florida Atlantic Univ., Boca Raton, Florida-33431,USA

R. D’Souza is with Motorola Inc., Plantation, FL, USA

G. Y. Chae is with the IT design research center, silla University,
Busan, Korea,(e-mail:cgy1234@hanmail.net)

(corresponding author to provide phone: +82-051-999-5735)

communication sub-systems on FPGA devices is becoming
more prevalent. Although the processing speed of DSP
devices is increasing every year, it lags behind the
demand for processing speed by emerging wideband
wireless communication standards such as 3G, 4G,
802.11 and Bluetooth [2]. When a DSP is used in the
implementation of these standards, the high rate signal
processing is done outside the DSP, either in an ASIC or
an FPGA. In some cases the entire processing is performed
in an ASIC or an FPGA. There are several criteria that
can be examined when evaluating the processor platform
appropriate for the application. Also, algorithms for
wireless communications systems that have traditionally
been implemented on DSP's by DSP engineers must now
be implemented on devices that have a completely
different development paradigm. In this paper we discuss
Direct Sequence Spread Spectrum (DS-SS) transmitter
design using FPGAs

II. SYSTEM REQUIREMENT

With rapid increase in variety of services through cell
phones, such as, web access, video transfer, online games
etc. demand for higher rate is increasing steadily. DS-SS
transmitters are integral components of wireless systems
and their ability to handle higher data rates is crucial for
high-speed wireless communication. DS-SS is probably
the most widely recognized form of spread spectrum. The
DS-SS process is performed by effectively multiplying
an RF carrier and a pseudo-noise (PN) digital signal.

First the PN code is modulated onto the information
signal using one of several modulation techniques (eg.
BPSK, QPSK, etc). Then, a doubly balanced mixer is used
to multiply the RF carrier and PN modulated information
signal. This process causes the RF signal to be replaced with
a very wide bandwidth signal with the spectral equivalent
of a noise signal. The demodulation process (for the BPSK
case) is then simply the mixing/multiplying of the same
PN modulated carrier with the incoming RF signal. The
output is a signal that is a maximum when the two signals
exactly equal one another or are “correlated”. The correlated
signal is then filtered and sent to a BPSK demodulator.

The table 1 below lists some of the system parameters
on which the design and implementation of the DS-SS
transmitter system are based.

The data payload of 128 bits is made up of preamble,
frame synchronization sequence and bits representing the
transmitter unit ID, transmission sequence number and

International Journal of KIMICS, Vol. 2, No. 2, June 2004

77

data obtained from sensing devices attached to the
transmitter.

Table 1 parameters for DS-SS system

System Parameter Value
Chip Rate 10 MHz
Bits per Packet 128
Chips per Bit 127
Samples per Chip 4

Channel Access /

Modulation DS-SS / DOQPSK

2.4 —2.483 GHz (ISM band)
500 mW - 1W

Frequency Band

Transmit Power

III. FUNCTIONAL DESCRIPTION

Fig. 1 shows a functional block diagram of the transmitter.
After the 128 bit data frame has been assembled, the odd
and even bits in the frame are separated and sent down
two separate paths, I and Q. The odd bits sent down the [
path, are first differentially encoded and then spread
using a 127 chip PN; sequence. The even bits sent down
the Q path, are also differentially encoded first and then
spread using a 127 chip PNg sequence. On the Q path,
there is an extra block where a delay of one-half of a
chip is applied to the shaped bit stream.

This is needed to implement the offset in the modulation
scheme. After the bits have been spread they are shaped
using a half-sine pulse shaping filter. The shaped bits from
the 1 and Q paths are then fed to two D/A converters. The
output of the D/A converters are then fed to baseband
and then to RF converters where the I and Q signals are
up-converted, combined and the resultant signal modulated.

Fig. 1 also represents the transmitter as implemented
using off-the-shelf hardware components. The system
consists of two major blocks — a Xilinx FPGA based
platform which takes care of all baseband processing and
sensor interface, and a RF platform which takes care of
Baseband>IF and IF>RF conversion and modulation.
The functions implemented within each block are listed
below the corresponding block.

* gL

110101 @
00110113 £,
10001111) PN_I
Bioch .
. S B ke
function:
S B oo

Hardware
Platform:

< Basebusnd 1o 11

cSpreadine

SNl PGV E

Fig. 1 Prototype DS-SS Transmitter Block Diagram

S22 AGH Intensil VB

IV. PROCEDURE FOR DESIGN

The selected platform, on which the transmitter was
implemented, had two FPGAs, with each one of the
FPGAs having access to one of the two A/D's and D/A's
on board. The board also had an EEPROM, which when
programmed and enabled would load the FPGAs with
their corresponding configuration files on powerup. Given
the board configuration, the functional tasks were split
among the two FPGAs - FPGA| and FPGA,, as follows:

FPGA,

® A circuit for the A/D interface is implemented
on FPGA; The A/D is connected to a sensor
device and is read by FPGA, once every time
period T. The 12 bits representing the signal at
the sampling instant are provided as the output
by this circuit.

® A circuit to assemble the A/D data bits with the
rest of the transmission frame is implemented
on FPGA,. The A/D data is combined with the
rest of the data and then appended to the preamble
and frame synchronization bits to create the
entire frame. The frame is then broken up into
odd and even bit streams. This circuit then shifts
the odd and even bit streams out one bit at a time.

® A circuit to differentially encode the I bit stream is
implemented on FPGA,. Fig. 2 shows a functional
block diagram of the differential encoder while
Table 1 shows the relationship between the input
and output bits. The logical “0” represents the
negation of the input signal.

® A circuit to differentially encode the Q bit stream
is implemented on FPGA,. The operation of this
circuit is similar to the one created for the I bit
stream. The output bits are read by a circuit on
FPGA,.

® A circuit to spread and shape the differentially
encoded I bit stream is implemented on FPGA,.
Spreading is accomplished by using the pre-
defined PN, sequence which is 127 chips long.
The spread sequence is then processed by a
pulse shaping filter where each chip is represented
by 4 samples. The output of this circuit is fed to
one of the D/A's for conversion to an analog
signal and further routing to the IF/RF board.

® Circuits to realize clock rates from the main on
board clock are implemented on FPGA;

A circuit to spread and shape the differentially encoded
Q bit stream is implemented on FPGAq. Spreading is
accomplished by using the pre-defined PNg sequence
which is 127 chips long. The spread sequence is then
processed by a pulse shaping filter where each chip is
represented by 4 samples. The output of this circuit is fed
to one of the D/A's for conversion to an analog signal
and further routing to the IF/RF board. Circuits to realize
clock rates from the main on board clock are implemented
on FPGA,,.

78 Abhijit S. Pandya, Ralph D’Souza and Gyoo-Yong Chae : Direct Sequence Spread Spectrum Transmitter using FPGAs

Z-l
Integer Delay

X
Product

Fig. 2 Functional Block Diagram of Differential Encoder

In

Table 1 - Differential encoder truth table

Input bit Previous Output | Present Output
0 0 1
0 1 0
1 0 0
1 1 1

The delay of 1/2 a chip or 2 samples between the I and
Q channels, required by OQPSK, is implemented by
having FPGA; generate a control signal for FPGAq
signaling when the spreading and shaping of the Q bit
stream can begin.

The steps necessary to synthesize and simulate the
baseband transmitter, described above, using the FPGA
design tools Express package are as follows:

1. Develop the Verilog Hardware Design Language HDL
(3,4] code to implement the blocks that make up the
transmitter

2. Synthesis phase. This is the process of compiling the
HDL code into an EDIF net-list of gates.

3. Implementation phase. This includes:

Translation - all input net-lists are merged.

Map - This step optimizes the gates and trims unused
logic in the merged net-list. The design's logic resources
are also mapped to resources on the silicon and a physical
rule check is performed.

Place and route - All logic blocks are assigned to specific
locations on the die. If timing constraints have been
placed on particular logic components, the placer tries to
meet those constraints by moving the corresponding
logic blocks closer together. In the routing stage, the
logic blocks are assigned specific inter-connect elements
on the die. If timing constraints have been placed on
particular logic components, the router tries to meet
those constraints by choosing a faster interconnect.

Configure - The physical implementation is translated
into a bit configuration file that is used to program the
FPGA.

Testing and verification of the baseband transmitter
functions are performed at two places within the
implementation phase. After the synthesis phase functional
simulation can be performed to verify that the logic
created is correct. For the lack of access to a more
standardized tool set, the logic simulator within Foundation

Express (Xilinx design package) {5] is used for functional
simulation. At the end of the Implementation phase,
timing simulation can be performed. Timing simulation
uses the block and routing delay information from the
routed design to give a more accurate assessment of the
behavior of the circuit. Timing simulation will be done
with the same tools as the functional simulation. The only
difference will be that the design loaded into the simulator
for timing simulation will contain routing delays based
on the actual placed and routed design.

Functional Simulation - When the logic simulator is
invoked, the project netlist created by the synthesis phase
is loaded into the simulator. There are three basic steps
to simulating the design:

1. Adding signals - the inputs and outputs that are to be
seen in the simulator.

2. Adding stimulus - inputs on some of the signals.

3. Running the simulation - and viewing the output
waveforms.

Timing Simulation - The timing simulation follows the
same process as the functional simulation. The difference
will be that the design loaded into the simulator contains
the route delays based on the actual placed and routed
design.

After the two designs were verified for function and
timing, a PROM file was created using the PROM File
Formatter utility in Foundation Express. The PROM file
consists of a data stream made up of two bit configuration
files, one for each FPGA. The bit configuration files
contain data to configure the two FPGAs connected in
daisy chain fashion on the breadboard. Within the
PROM File Formatter utility, in the PROM description
area, the bit files are displayed in the order in which they
are to be loaded into the FPGA devices on the chain. The
first bit file is for FPGA; and the second bit file is for
FPGAq. After the PROM file is created, it is programmed
onto the breadboard using the Download utility within
Foundation Express. Once the two FPGA devices were
programmed, the reset circuitry on the board asserts the
reset signal and the FPGA devices were able to operate
based on the design programmed into them.

On the breadboard, several test points were probed to
verify the presence of valid signals [6]. The inverted 40
MHz clock was generated within the FPGA, off the on
board 80 MHz clock and this signal was fed to the D/A
chip. The inverted clock was captured on the scope and
the period/frequency verified. Whenever the I or Q
transmitter entered the transmission state, the LED
corresponding to the I or Q FPGA would light up. This
visual indication also verified correct operation of the
design. Finally, the data output by the I and Q D/A's
were captured on the oscilloscope as well as written to
files using the floppy drive on the oscilloscope. The raw
I and Q data were plotted using Matlab. In addition a
constellation diagram and the eye diagrams for the I and
Q channels were plotted from the data. The constellation
diagram showed that the offset in samples required for
OQPSK modulation was being achieved.

International Journal of KIMICS, Vol. 2, No. 2, June 2004

79

Figure 3 below shows three plots which are based off
and Q data captured from the breadboard.

Fig. 3 Plots obtained from I and Q data output by the
FPGA's on two D/A channels

V. CONCLUSIONS

Applications like web access, video transfer, online
games etc. require much higher data transfer rates. With
increasing demand for higher communication rate in
wireless communications there is a need to explore other
ways of designing DS-SS transmitters. We have shown
that FPGAs can be an alternative to traditional designs
using DSPs which tend to have rate limitations.

In this paper we have described the design of the
baseband processing portion of a DS-SS transmitter and
its implementation on a Xilinx based platform. The various
steps involved in arriving at a successful implementation
have been outlined. There are other tool sets, considered
more mainstream, that were available to synthesize and
simulate the design. The Foundation series package had
a more affordable cost structure and it took on the order
of a week to get familiarized with the operation of the
package. The design could have been accomplished on
FPGA's of smaller sizes (since each bit configuration file
occupies less than 20% of the respective FPGA), but the
prototype board had the right match of components
required to implement our design.

REFERENCES

[1] R. C. Dixon, spread spectrum systems, John willey
and sons, Inc., New York, 1984.

[2] S. LMiller,” An adaptive direct-sequence code—division
multiple-access receiver for multiuser interference
rejection ,” IEEE Trans Commun., vol. 43, pp. 1746-
1755, Feb./Mar./Apr. 1995.

[3] Samir Palnitkar, Verilog HDL. A Guide to Digital
Design and Synthesis, SunSoft Press, Prentice Hall
Title, 1996.

[4] Douglas Smith, HDL Chip Design, Doone Publications,
1996.

[5] Xilinx, Foundation Series 3.11 Users Guide.

[6] GV & Associates, Inc., GVA-200A Hardware
Accelerator User's Manual.

Dr. A.S. Pandya

Dr. A.S. Pandya is a professor at the
Computer Science and Engineering
Department, Florida Atlantic University.
He has published over 100 papers
and book chapters, and a number of
|| books in the areas of neural networks
L] and ATM networks. This includes a
text published by CRC Press and IEEE Press entitled
“Pattern Recognition using Neural Networks in C++”.
He consults for several industries including IBM, Motorola,
Coulter industries and the U.S. Patent Office. He received
his undergraduate education at the Indian Institute of
Technology, Bombay. He earned his M. S. and Ph. D. in
Computer Science from the Syracuse University, New
York. He has worked as a visiting Professor in various
countries including Japan, Korea, India, etc. His areas of
research include VLSI implementable algorithms,
Applications of Al and Image analysis in Medicine,
Financial Forecasting using Neural Networks.

*

¥

Gyoo-Yong Chae

He received the M. S. and the Ph.D.
degrees from Department of Industrial
Engineering of KonKuk University,
Seoul, Korea, in 1993 and 1999,
respectively. At present he is a member
of research laboratory committee of
Silla university IT design research
laboratory. His research interests include Fuzzy Neural
network, Data mining, Image Processing, Pattern Recognition,
Bioinfomatics, DB, EC, etc.

