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Abstract—The prosthesis of current commercialized
apparatus has considerable problems, requiring improvement.
Especially, LLP(Lower Limb Prosthesis)-related problems
have improved, but it cannot provide normal walking
because, mainly, the gait control of the LLP does not fit
with patient’s gait manner. To solve this problem,
HCI((Human Computer Interaction) that adapts and
controls LLP postures according to patient’s gait manner
more effectively is studied in this research. The proposed
control technique has 2 steps: 1) the multilayer neural
network forecasts angles of gait of LLP by using the
angle of normal side of lower limbs; and 2) the adaptive
neural controller manages the postures of the LLP based
on the predicted joint angles. According to the experiment
data, the prediction error of hip angles was 0.32[deg.],
and the predicted error of knee angles was 0.12[deg.] for
the estimated posture angles for the LLP. The performance
data was obtained by applying the reference inputs of the
LLP controller while walking. Accordingly, the control
performance of the hip prosthesis improved by 80% due
to the control postures of the LLP using the reference
input when comparing with LQR controller.

Index Terms—Lower Limb Prosthesis, Neural Net-
works, Gait Control.

L INTRODUCTION

The number of patients whose one-side or all limbs or
the lower half of body is paralyzed or upper/lower limbs
are amputated has increased due to industrial or traffic
accidents [1]-[3]. Current commercial assistant equipment
or artificial legs to help the patients have been developed,
but it cannot provide normal walking because the gait
control of the LLP does not fit with patient’s gait manner and
it needs long-term training for normal gait. Furthermore,
patients feel fatigue when they wear it long time. The
main reason for these problems is that patients have
difficulty in controlling the gait angle while they are
walking with it [2]-[4]. Human gait has a gait cycle in
which a lower limb returns from one motion to another
while it draws a circular arc. Namely, the cycle starts
from when one leg goes forward and the corresponding
heel strike touches the ground while the body advances,
to when the foot again goes forward and touches the
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ground. Each cycle can be broken up into two phases:
the stance phase and the swing phase. The stance phase
is also called as supporting phase of the body, and can be
divided into the heel strike phase, the loading response
phase, the mid-stance phase and the terminal stance
phase. The swing phase begins from when the foot is off
the ground and the body advances ahead, to when the
foot touches the ground [2]-[5]. Therefore, a gait means
the lower limb repeats one motion to another drawing a
circular arc. This gait phase includes a simple genetic
reflex function, learned activities as well as personal
characteristics about both legs movement patterns, and it
involves various factors such as the peripheral-central
nervous system and heart/lung functions. Also, the gait
angle of each joint depends on patient’s gait habit,
physical size etc [2]-[5]. It is hard to obtain the normal
gait pattern of the patients whose lower limbs are
amputated. This paper presents the method to control the
gait appropriately for each patient’s gait manner using
the neural network that learns how to solve above-
mentioned problems. To implement the system, the gait
angle was determined by using the knee angle of the
normal lower limb when the patient wore an artificial
leg; with the extracted gait angle, the gait posture of an
artificial leg from the neural network that learned
kinematics of normal human gait was estimated; then,
the gait similar to a normal person’s was provided
through the adaptive gait control using the neural
network. In conclusion, the performance of the presented
system is analyzed.

II. HIP PROSTHESIS MODELING

The hip prosthesis was modeled in this research in
order to verify the controlling method for proper gait of a

. patient whose limbs below the hip were lost. The hip

prosthesis is an artificial leg used after amputating all
limbs below or including the hip. Artificial legs should
give suitable appearance, convenience and maximum
functions when the patient loses some or all lower limbs
due to a congenital loss/disease or disaster. The artificial
leg operates with inter-reaction between three joints (hip
joint, knee joint and ankle joint) and feet; thus, kinetic
modeling is required considering all [2]-[5]. In this study,
however, an artificial leg with fixed ankle joint was
modeled. Fig. 1 shows the modeling structure of the hip
prosthesis. The hip joint in Fig. 1 was set as the origin of
the motion (x =0, y=0); X6 Yico? Xsc and Ysca (the
positions of the center of gravity) considering /, . and

(the center of gravity of each link) are expressed as below:

LSCG
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i,cg, j),(yg, 'stG and jzsCG (the velocities of the center of
gravity per link) can be obtained from differentiating Eq.
(1) ~ (4) by ¢ (time).

Hip

Fig. 1 Hip prosthesis model

Y06 = Loy cosb), &)
Vg = Leg 8, 5in 6, (6)
Xoq = L,é,, cos @, + LsCGék cos 6, )
Vi = L,8,sin 8, + L6, sin 6, (3)

Therefore, v, and v, (velocity vectors of the position of
the center of gravity at the thigh and the shin) are:

v, = |:5fxcc :I 9
Y

v, = I:"?sCG ] (10)
YscG

v,Tv, and vsT v, can be expressed as Eq. (11) and (12):

ol e o
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t ysCG ysCG

=126, +12;0, +2L,L;6,6, cos(6, -8,)

The kinetic energy T; and T and the potential energy U,
and U; of each link are expressed as below. The kinetic
energy (7,) and the potential energy (U,) of the thigh are
Eq. (13) and Eq. (14); the kinetic energy (7.) and the
potential energy (U;) of the shin are Eq. (15) and Eq.
(16):

1 . .

T, =5M, (Lfcce,,2 +1,49,3) (13)

Ut = _MtthCG COS Hh (14)
i . .

T, =§M:L30h2+L§CG 9k2 (15)
+2L,L.;6,6, cos(8, —6,)+ %géj

U, =-M,g(L, cos6, + Ly cosb,) (16)

The total kinetic energy (7) and the potential energy
(U) can be derived from Eq. (13) to (16).

2
r=33 (M} +1m2) =147, a”
J=1
. 120>+ 12,6,
Mg, ¢ 2p O T e
2 2 " |4+2LL.0,6,c0s(6,-6,)
+%(1,0',,2 +Ix0'k2)
U=y M,g, =(U,+U,) (18)

=

=—{M,gL; cosB, + M g(L, cos@, + L cosb, )}

Lagrangian L is obtained from Eq. (17) and (18); the
kinetic equation of one-side artificial leg in 2-dimentsion
plane is determined by using Lagrangian equation [6][7].

L=T-U 19)
Le,’
= %M_f +2L,6,L,;6, cos(6, - 6,)
+12..0,’

L, cosb,
+M,gL;cos6, + M. g

+ L, oSO,
M L+ 216, 4116

The torque (z,) of the hip joint angle and the torque ()
of the knee joint angle can be derived using Lagrangian
equation:

= (MILfCG +M,L +1r)éh +M,L L6, co{6, —6,)
+M,L LA, sinl0, -6,) + &M Lo+ ML )sinG,

(20)

7, = M,L,L .0, cos(8, - 6,)+ (M2 +1,)0,
- ML ;6,’Lsin(f, - 6,)+ M gL sinb,

@n
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Eq. (20) and (21) does not consider the ground reaction
force occurs in human walking. If the reaction force per
the vertical/horizontal position of the foot on the ground
is considered, the kinetic equation of the dynamic
modeling of lower limb for human gait can be expressed
as Eq. (22) and (23):

(1) =(M‘L12CG + ML +1, )91. +MsL1LxCGék 0049/, _Hk)
+M, :L:Lscaékz Sin(eh -6, ) + g(M L+ ML, )Sineh 22)
- XL sin6, +Y, L, cost,

7, = M,L L0, cos(8, -0, )+ (M, L +1,)8,
-M,LL .0, sin(0, -6, )+ M gL ;sinb,
=X, L sing, +7Y,L cosb,

23

_The physical parameters and the initial conditions of all
_status were set up as 0. The Physical parameters for
simulation are as shown Table 1.

Table 1. Physical parameters of an artificial leg

Parameters Units Hip prosthesis
L [m] 0.42
Ly [m] 0.18
L [m] 0.51
Licg [m/ 0.24
M, [ke] 8.1
M, [kg] 45
I, Kgn® 0.06
I kgm’ 0.11

II. PROPOSED CONTROL SYSTEM

Human gait depends on walking speed, walking
posture, the type of road etc. Accordingly, this research
assumes two conditions to predict patient’s gait angle.
First, the characteristic of the gait of the amputated leg is
same as those of normal lower limb; second, the angle of
knee increases if the knee joint bends and decreases if
extends. In this study, the control structure and technique
are suggested as shown Fig. 2. The proposed method is
to realize the same gait posture of the patients whose
one-side lower limb is lost as normal person. The
characteristics of proposed method is that first, the neural
network learned a normal person’s gait manner, which
was similar to the patient; second, the hip joint angel and
the posture angles of the artificial leg for walking were
estimated based on the knee angle of normal one-side
lower limb; third, the predicted angle was set up as the
target value to control the posture adaptively.

A. Gait angle prediction and Results of Simulation

In this study, the MNN(multilayer neural networks) to
predict the gait angles of LLP were used in this method
as shown in Fig. 3. In Fig. 3, the input of neural network

to estimate the angles of LLP used a knee angle signal
that was obtained from the knee joint angle of the normal
lower limb. The knee angle sensor to measure angles of
the lower limb while walking used a tilt sensor (DAS’s
TILT SA1 [8]) which has +60° ranges as shown Table 2.
The outputs of MNN to predict the angles of LLP are a
estimated hip angle, 4 and a estimated knee angle §7.

4,7
Gait -Inverse Kincmatics) ék
“ l
1

Fig. 2 Proposed structure to control the posture of the
prosthesis

Fig. 3 Structure of the gait angle predictor based on the
estimated knee angle and the multilayer neural
network

Table 2. Specifications of the tilt sensor.

Measuring range +60°
Resolution <0.1 degrees
Non-Linearity <1% FS
Response time <0.5% at £60°tilt
Power supply 5Vdc
Current consumption <lmA
Sensitivity appox 30mV/°
Zero offset at 5V 2.5+0.2Volt
Output impedance 10kOhm

This proposes the identification method of the dynamics
for patient’s walking pattern. Namely, to estimate the hip
joint and knee joint angles of the artificial leg of the
patient whose one-side leg is lost, this method obtains
physically similar person’s the gait angel and uses the
data for learning the gait angle estimator. The learning
algorithm used EBPA(Error Back Propagation Algorithm)
of the multi-layer. Below is the neural network learning
method [9]-{11], and the output O, O; and O, of neurons
in the input layer, hidden layer and output layer are:
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) =X 24

0,=4 f(netj), net,; = iwﬁ o, (25)
=1

K J
0,=4 f[Znetk ) net, =3 w, 0, (26)
k=1 j=l

where f'is the activate function; net; and net; are sums of
the multiplication of the previous neuron output and the
current layer weight; 4 is the slope of £ To learn the
neural network, the error from the desired value vector of
the neural network, d =[¢" @), is obtained as shown

(b -6 } @n

in Eq. (27).
g2l
2[(0:—9‘:)2

The purpose of the learning is to adjust the weight to
minimize E . For this, the weight should changes to the
negative gradient direction. Therefore, the weight variation
can be obtained by partially differentiating the direction
vector of the weight for the error. The weight variation in
each layer is:

n >0 28)

where 1 is a learning constant. To minimize the error, the
weight in the hidden layer should change to the negative
gradient direction.

OFE
ow -

J

Awy =-n R n>0 29)

Therefore, the weights variations are:

Wi =w; +Aw, (30.2)

Wy = Wy + Awy, (30.b)

J

The initial weight ranges —0.5 to 0.5. Namely, the gait
posture angle of each joint of the artificial leg was
estimated using the knee joint angle estimated during
walking with forward operation of the neural network,
based on the weight data of the neural network which
learns the normal gait data. To verify the performance of
the gait angle estimator of the artificial leg during
walking, Table 3’s parameters were tested. Fig. 4 and
Table 4 and 5 show the result. According to Table 4 and
5, the estimated error average of each joint is 0.22,
giving 97.5% of the accuracy of the estimated posture
angle, which can be expected that the estimator is
available for controlling the motion of the artificial leg
for walking. In this study, the estimated angle was set as
the reference signal of the posture controller.

Table 3. Parameters of neural network to estimate the

gait angles
Input Neurons 100
Hidden Neurons 20
Output Neurons 2
Activation function bipolar sigmoid
Learning rate 0.1
Iterations 200

1eft Knee
i a A e e a's

Right Hip
Arglefdes)] OM

-2 1 B S L ! 1 ul 1
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T T I R R — T T o
Right Knee
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Q 1 2 3 4 S 1] 7 8 9
Timefsec)

Fig. 4 Estimated angles of LLP during walking

Table 4. Errors of the estimated angles using the MLNN

Absolute Mean Error
Hip Knee
gait 0.32 012 |

simulation Item

IV. GAIT POSTURE CONTROL

In this study, the multilayer neural network was used
to control each joint angle of the artificial leg. The
controlling algorithm of this controller is the feed-forward
learning controller suggested by Kawato [11], known as
on-line learning controller. Traditional feedback controller
is placed in parallel in this neural network controller, and
the neural network repeats the required period while the
feed-forward error is feedback through the neural network,
learning and controlling the system on line. Namely, the
feed-forward error, which is the output of the feed-forward
controller, is feedback to learn the neural network in
plenty of learning cycles until the error converges. During
converging, the neural network learns the inverse of the
plant to control it, as shown in Fig. 2. In Fig. 2, the overall
control outputs u,, u, are:

uH:u§+ugN, uK=u,c<+u,/¥N 3D

where #* and #™"" are the outputs of the linear controller
and the neural network controller respectively.

A. Design of the LOR controller

To design the feedback controller of state variables, the
controllability and observability should be checked [12].
If the control u, which allows the initial state x(0) of the
system, which is matrix (4,B), to move to other desired
place x(1), exists, it is controllable. If Eq. (32) is the state
equation of the modeled artificial system, Eq. (33) is
applied to investigate the controllability.
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Xx=Ax+Bu, y=Cx (32)
rank|B AB A’B ... A7'B]=n (33)

The controllability of the system can be determined by
checking the given algebraic conditions of the matrix.
The necessary and sufficient condition of that all roots of
an equation can be placed in desired positions in s-plane
is that the system should be observed and controllable.
Therefore, if an output has any factor affects on each
state variable, the system is observable. The necessary
and sufficient condition of that the system is observable
is that the initial state x(0) can be determined from the
given control input u(?) and the output y(2) at limited time
T. Namely, if O matrix is not zero, the system is
observable. Observability can be obtained from Eq. (34):

C

CA 34
0| € 34

CA™!

In this study, the ranks of the modeled artificial hip
prosthesis systems is 4; Oy is not 0, so the systems are
controllable and observable. In this study, the state
, feedback controller was designed as the LQR controller.
Since the regulator is time-independent feedback controller,
the plant is maintained within the desired deviation from
the reference state, by using containable amount of
"contains. Because all state measurement is valid for the
artificial models in this research, all states can be
feedback. For optimal control, the state feedback gain
matrix K is obtained from Eq. (35) to minimize the
performance index [12].

J = J:o (x’Qx + u'Ru ) d (35)

u= [”h] _ |:k1 (9h - xl) - (k2x2 + ks +kyx, ):| (36)
Uy k, (0k - xz) - (klxl +hyxy + k4x4)

~ Q-matrix and R can be defined as below; the gain matrix
k is obtained to design the controller.

1000

_|oroo| . o
2=0010]" ®=[01 )

0001

[ 3.0940 —0.0720 2.7288 0.6198
~10.0607 3.5701 0.7098 1.7839

B. Neural Controller

In neural networks controller, the learning of the feed-
forward error-learning controiler minimizes the error
function E given from Eq. (38). The desired output
vector d(n) = [o‘k,éh]; the output of the artificial system is

yn)=[6,.0,]

1|65 -7 (38)
2 (éf _ 5 R

If the activate function for the output layer of this
neural network controller has a linear function net=f(net),
the output layer and the hidden layer are calculated using

the gradient descent learning algorithm, as Eq. (39) and
(40) respectively:

OF
Awkj(n+l)=—r]aw ™) n >0 39)
K
OF
iji(n+l)=—nm, n >0 (40)

The neural networks controller is to learn Jacobian of hip
prosthesis system, dyvy/dug i .

C. Experiment and Result

To verify the performance of the suggested controlling
method, the posture controller with the structure in Fig. 2
was designed and simulated. The structure of the neural
network for controlling the posture of the hip prosthesis
is time-delaying neural network; 18 input neurons, 8 hidden
layers and 2 output layers consist in. The activate
function is sigmoid. The input vector of the controlling
neural network is the state vector of hip joint angle

(6,(n)), its angular velocity (9;,), knee joint angle (g,(x)),

its angular velocity (6y) of the artificial leg; each first degree
delaying is ¢,(n-1), 6,(n-1),6,(n-1) and g,(n-1); the
control errors are ¢(n) and e(n-1); the hip joint angles,
which are the estimation outputs of the neural network,
are §,(x) and §,(n-1); the knee joint angles are 4,(») and
6,(n—1); the outputs of the state feed-forward controller
are u,C(n), wC(n) , w,(n-1) and w(n-1 '); overall control
outputs 4, (z) and 4, () are setup as inputs. This controller
has same control rules as artificial thigh controller; the
posture is adaptively controlled through the learning
convergence of the neural network controller while the
LQR controller controls linearly. LQR controller’s gain
derives from Eq. (49). Fig. 5 and Table 5 show the control
result when the neural network is learned 12 times. According
to the data, the neural network controller provided improvement
after learning, depending on patient’s gait status.

20
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Hip o = -
Argleldeg ]
20 1 1 I 1
] 1 2 3 a4
50 T T T T
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1O e S P g e |
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i ] 1 -
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Errorideg.)
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Fig. 5 Result of the adaptive posture control of knee and
hip joints while walking ; NN(-), LQR(--), Estimated
angle (-).
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Table S. Error of the posture control using the neural
controller

Absolute Mean Error
LQR NN
Hip | Knee | Hip Knee

gait 2212 | 3.114 | 1.312 1.105

simulation Item

V. CONCLUSION

In this study, the posture control technique was
proposed using the learning function of the artificial
neural network in order to recover patient’s walking
pattern to the normal person’s. The proposed technique
predicts the gait postures of an artificial leg from the
neural network that learns the normal peoples gait
dynamics based on the estimated current gait angles
using the knee angle of the normal lower limb. According
to the experimental result, the absolute average error of
the estimated angles of LLP was 0.22[deg.], showing
excellent estimation performance. The simulation verifies
that the posture angles during walking can be used as
inputs of the controller. This technique controls the posture
of the artificial leg using the estimated gait angles,
providing more 80% controllability than LQR controller,
and is expected to control the artificial leg more effectively.
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