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Prediction of the Probability of Customer Attrition
by Using Cox Regressionl)
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Abstract

This paper presents our work on constructing a model that is intended to predict
the probability of attrition at specified points in time among customers of an
insurance company. There are some difficulties in building a data-based model
because a data set may contain possibly censored observations. In an effort to avoid
such kind of problem, we performed logistic regression over specified time intervals
while using explanatory variables to construct the proposed model. Then, we
developed a Cox-type regression model for estimating the probability of attrition over
a specified period of time using time-dependent explanatory variables subject to
changes in value over the course of the observations.
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1. Introduction

The objective of this study is to construct a model for predicting the probability of attrition
over specified points in time among customers of an insurance company. To begin with, we
collected data on some one million customers who have taken out insurance for the past five
years. However, there is a critical challenge of constructing a data-based model because
censored observations may be contained in the data to be used. It results from the fact that,
for customers who have yet to cancel their insurance policy, we know only the minimum
length of time during which they are insured, not the exact duration of their insurance
contract. This led to the failure to derive the proposed model by means of standard statistical
approaches such as logistic regression which is often used to investigate the relationship
between binary response (for example, success and failure) and a set of explanatory variables.
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There are many types of models that have been used for censored data (or survival data).
Among them, two types of models are most widely used; One is the accelerated failure time
model (Kalbfleisch and Prentice, 1980) and the other the proportional hazards model, also
known as Cox regression (Cox, 1972). Both models are based on the assumptions about the
underlying distribution of survival times. The accelerated failure time model assumes a
parametric form not only for the effects of the explanatory variables but also for the
underlying survival function as a rule. Cox regression also assumes a parametric form for the
effects of the explanatory variables, but it allows an unspecified form for the underlying
survival function. Moreover, Cox regression makes it relatively easy to incorporate
time-dependent explanatory variables which are subject to changes in value during any
observation period. Consequently, Cox regression has been used in this study as a means of
constructing the proposed model from a practical perspective.

Meanwhile, due to as many as about 100 explanatory variables collected (including
time-dependent variables), it has not been possible, in a practical way, as it were,
computationally, to develop the proposed model, taking all the variables into account at one
time. Therefore, variable selection is needed as a pre-processing. In order to construct the
proposed model, we used explanatory variables as well as performed logistic regression at
several time intervals.

The rest of the paper is organized as follows. In Section 2, we formally introduce the basic
concepts of survival analysis as well as Cox regression with time-dependent explanatory
variables. In Section 3, we present the framework for variable selection as a preprocessing.
Section 4 provides a description of the Cox-type regression model for predicting the
probability of attrition at specified points in time while assessing the proposed model using a
validation data set.

2. Basic Concepts of Cox Regression

Survival analysis is a loosely defined statistical term that encompasses a variety of
statistical techniques for analyzing positive-valued random variables and finds its widest use
in both reliability and clinical trial studies (Kalbfleisch and Prentice, 1980; Miller, 1981;
Lawless, 1981). Survival data consist of a response variable that measures the duration of
time until a specified event occurs (event time, failure time, or survival time) and possibly a
set of explanatory variables thought to be associated with the survival time variable. The
purpose of survival analysis is to model the underlying distribution of the survival time
variable and to assess the dependence of the survival time variable on the explanatory
variables.

Let the survival time variable, 7°( =0), have density A#) and distribution function F(¥.

The survival function S(¥ is
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S()=1-F®=P(T> 4, (2.1)

and the hazard function k(#) is

_ R
The survival function and the hazard function are interpreted as follows: {an individual
survives longer than ¢} and A(f)=Ilim 45 (P{an individual fails between ¢ and ¢+ ¢ given

it survived past time ¢}/ 8f. The survival function can be expressed in terms of the hazard
function

S(H=exp { - foth( u)a’u}. (2.3)

An intrinsic characteristic of survival data is that a data set may contain possibly censored
observations. That’s because the event of interest is very rarely observed by the end of the
study. Such censoring occurs when an entry is not observed until an event of interest (such
as death or other type of failure) occurs. As it takes a long-period observation to get a
response, the event of interest may not occur over the entire period of or at the termination
time for data collection.

With focus more on the effect of explanatory variables on survival times, Cox regression
(i.e. the proportional hazards model) is most widely used as a method for the analysis of
censored data (Garfield, 1990), mainly because it eliminates the necessity of a particular
probability distribution of survival times. The model is usually written as

h‘(t)=h0(t) exp{ﬂ' -xi}’ (24)

where hy(#) is an arbitrary and unspecified baseline hazard function, x;=(x; *-- x ) is
a vector of measured explanatory variables for the ¢-th individual, and is a vector of
8= (Bl -+ B8,)° unknown regression parameters associated with the explanatory variables.

Taking the logarithm of both sides, the model can be rewritten as
logh{D=a(D+ 8 x;, 25)

where a(H = loghy($. To estimate £, Cox (1972, 1975) introduced the partial likelihood

function, which eliminates the unknown baseline hazard #;(#) and accounts for censored

survival times.
The partial likelihood of Cox also allows time-dependent explanatory variables. An
explanatory variable is time-dependent if its value for any given individual can change over
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time and time-dependent variables have many useful applications in survival analysis. For the
model with fixed and time-dependent explanatory variables, we have

10gh,(t)=0.(t)+ _ﬁl’_xﬂ'i" _Qz’ﬁa(t). (26)

This indicates that the hazard at time ¢ depends on the values of fixed explanatory variables

X 5, and on the values of time-dependent explanatory variables x , at time {. What may
not be clear is that x ,(# can be defined using any information about the individual prior

to time ¢, thereby allowing for lagged or cumulative values of some variables.
For the Cox regression model with time-dependent explanatory variables, the survival
function can be expressed as

S(t %), x)=[Sy(] = & At B o) @7

t
where Sy(H)= exp{—- fo hy(2) du} is the baseline survival function, that is, the survival

function for an individual whose explanatory variables all have values of 0. After estimating
B, and B, by partial likelihood, an estimate of Sy(# is made by a nonparametric
maximum likelthood method (Allison, 1995).

3. Pre-Processing of Variabie Selection

To construct the proposed model, we have collected data on some one million customers
who have taken out insurance for the past five years (length of time between January 1995
and December 1999). The data consists of event times containing the length of time during
which an insurance contract of interest is cancelled by their customers, the entire month of
December 1999 during which the customers have yet to cancel the insurance contract, and a
set of explanatory variables.

The set of non-time-dependent explanatory variables, x;, is created based on the

information at time #=0 (ie. the time period during which a customer is insured). It also
contains demographic variables (i.e. gender, age, marital status, etc.), socio—economic features
(i.e. occupation, housing, etc.), policy-related information (i.e. policy categories, payment/
collection methods, sum of premiums, etc.), transaction history (i.e. the date when an
insurance policy of interest is signed by the customer, amount of loan, etc.), and solicitation
agents (i.e. position, age, etc.).

Since it is not actually possible to create time-dependent variables at all points in time
(t<60), the set of time-dependent explanatory variables, x,(?;), is created at seven points

chosen for the time (#=3,%="6,=9,¢=12,#=18, {,=24, #;=36) in which the
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insurance company in question experiences some of the highest attrition rates. The earlier a
customer cancels the insurance policy, the higher the company suffers customer attrition.
Therefore, we have selected some more points falling within earlier time periods in order to
ensure accuracy in building the proposed model. The set of time-dependent explanatory
variables contains the variables with lagged or cumulative values that encompass disabled
status, amount of policy loan, changes/non-change made to payment method, question of
whether or not a specific solicitation agent still works for the company at time interval
(0, ).

Since dummy variables are needed for a categorical variable like policy category and
payment method, we have a number of parameters available for an estimate of the proposed
model. For a model that allows time-dependent explanatory variables, computing the resulting
partial likelihood is generally too time-consuming. A few variable selection methods for Cox
regression have been suggested by SAS Institute (1999), Faraggi & Simon (1998), Ibrahim et
al. (1999), and Fan & Li (2002) etc. However, those methods are not applicable to this case
that allows numerous parameters as well as time-dependent explanatory variables. In actuality,
it is not so easy to develop a model, taking all variables into account at one time. For this
reason, we select the explanatory variables that will be used to construct the proposed model
in the following exploratory manner.

Firstly, we create variables y,(/=1,-:,7) with the value of 1 if event time is less than or
equal to #, or O otherwise, and yg with the value of 1 if event time is not censored or O
otherwise. Secondly, using the observations of which event time is greater than ¢,_;(where

t,=0), we carry out usual logistic regression
Loglt (y,)=a',+ _311, &1+ _521’ Xy (tl—l)' (31)

for each response variable y,(/=1,-:+,8) with a stepwise variable selection method. Finally,
for our Cox regression model, we select the explanatory variables x,;'s, of x,, in which
more than one of parameters B ,,(/=1,,8) are statistically significant. Additionally, we
select the time-dependent explanatory variables x,,()’s, of %x5(+), in which more than

one of parameters B,(/=1,-,8) are statistically significant.

4. Prediction of the Probability of Customer Attrition and
Validation of the Model

Using the selected explanatory variables as well as a pre-processing method of variable
selection, we apply the following Cox regression model to the same data described in previous
Section
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logh(H=a(D+ B, x,+ B, x,(D, (4.1)

where / is the maximum value of #,’s which are less than f{. Once again, we select

statistically significant variables from both x,; and x . Finally, we use 11 non-time-

dependent explanatory variables (i.e. gender, age, policy category, payment method, amount of
loan, solicitation agent’'s position, etc.) and 5 time-dependent explanatory variables (i.e.
disabled status, changes/non-change made to payment method, the question of whether or not
a specific solicitation agent still works for the company, etc.) as a means of constructing the
proposed model.

Let T, denote the event time at a certain time. In order to curb attrition rates, the

insurance company attempts to contact customers who are likely to cancel the insurance over
the next six months. Thus, we can predict the likelihood of a customer’s cancellation using an
estimated survival function as well as the following conditional probability which is- denoted

by AP,

AP6(x) = P(Ty <Kt Ty+6)/P(Ty< T)=1—S(Ty+6)/S(Ty), (4.2)

where x is the value of explanatory variables at a certain time.

To validate the model (4.2), we extracted the information about one hundred thousand
customers who haven’t cancelled the insurance policy yet as of December 1999, while
collecting the validation data set of which variables have values as of December 1999.
Furthermore, we obtained additional information about individual customers who cancelled the
insurance policy during the time period between January 2000 and June 2000.

Table I shows the validation accuracy of the model in terms of rank ordering accounts on
the basis of the predicted probability of attrition. This gains table, generally used as an
assessment tool for evaluating the performance of a model in data mining (Rud, 2001), is
constructed in the following manner: (1) A data set is sorted by the predicted probabilities of
the event in descending order, (2) which is followed by grouping the observations into deciles,
and (3) the gain (percent of the event) is calculated within each group. Thus, the gains of a
good predictive model including its cumulative gains are dropped off abruptly at some cutoff
values. Likewise, the gains of a mediocre model decrease gradually.

The lift is calculated by dividing the decile percent of the event by the overall percent of
the event 7.5%. The value of 2.11 in decile 0-10% means that the customers in this decile
are 211% more likely to be motivated than the overall average. At each decile, lift
measurements demonstrate the model’s power to beat the random approach or average
performance. Table 1 indicates that the decile 0-10% is 2.11 times greater than the average.
For the proposed model, up to and including the decile 30-40% outperforms the average. As
illustrated by Table I, the proposed model has provided a high degree of predictability for
customer attrition.
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Table 1. Gains and Lifts for Predicted Probability of Attrition

Non-Cumulative Cumulative

. # of # of . . # of # of . .
Decile Obs. ithe events Gain Lift Obs. ithe events Gain Lift

0- 10% | 10000 1583 158% | 2.11 10000 1583 158% | 2.11
10- 20% | 10000 1035 104% | 1.39 20000 2618 131% | 1.75
20- 30% | 10000 1019 102% | 1.36 30000 3637 12.1% | 1.61
30- 40% | 10000 853 85% | 113 40000 4490 11.2% | 1.49
40- 50% | 10000 715 72% | 0.96 50000 5205 104% | 1.38
50- 60% | 10000 661 6.6% | 0.88 60000 5866 98% | 131
60- 70% | 10000 637 64% | 085 70000 6503 93% | 124
70- 80% | 10000 502 50% | 067 80000 7005 88% | 1.17
80- 90% | 10000 338 34% | 045 90000 7343 8.2% | 1.09
90-100% | 10000 166 1.7% | 0.23 | 100000 7509 75% | 1.00
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