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A Family of Truncated Skew—-Normal Distributions

Hea-Jung Kiml
Abstract

The paper extends earlier work on the skew-normal distribution, a family of
distributions including normal, but with extra parameter to regulate skewness. The
present work introduces a singly truncated parametric family that strictly includes a
truncated normal distribution, and studies its properties, with special emphasis on the
relation with bivariate normal distribution.

Keywords ' skew-normal distribution, singly truncated distribution, conditional bivariate normal
distribution.

1. Introduction

A random variable W is said to be skew-normal with parameter ©, written W ~SN(© ),
if its density function is

2 d(w) ®(Ow), —oolw{oo, (1)

where ®(w) and ®(w) denote the standard normal and distribution function, respectively; the

parameter © which regulates the skewness varies in (— 0, ), and ©=0 corresponds to

the standard normal density. The random variable W can be expressed in terms of two

independent standard normal random variables U and V :

W=(V+e |U|)N1+6?2. 2)

A systematic treatment of the distribution, developed independently from earlier works, has
been given by Azzalini (1985) and Henze (1986). The distribution is suitable for the analysis
of data exhibiting a unimodal empirical distribution but with some skewness present, a
situation often occurring in practical problems. See Kim (2002) and references therein for the
applications of the distribution. As for extensions of the distribution, many classes of
distributions are proposed. Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999)
discussed the multivariate extension of the distribution whose the marginal distributions are
scalar skew normal; Branco and Dey (2001) proposed a general class of multivariate
skew-elliptical distributions which includes the multivariate extension; Kim (2002) suggested a
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class of skew distributions obtained from various scale mixtures of the skew normal
distribution.

The major goal of this paper is to introduce a family of truncated skew-normal distributions
as a variant of the skew-normal distribution. The interest in the family comes from both
theoretical and applied direction. On the theoretical side it enjoys a number of formal
properties which resemble those of the skew-normal distribution and produces a class of

singly truncated distributions. Further it defines a class of conditional distributions of Y,
given Y >0 (or Y <0, for i=1,2) when (Y,,Y,) has a bivariate normal distribution.
This enables us inference for the marginal distribution of Y; when the Y, and Y,

variables are truncated in each form of the condition, but only the Y, values are observed.

Therefore, in the applied viewpoint, the class of distributions provides yet another models that
enable us to analyze a truncated (or censored) data set. Immediate examples are personnel
selection, clinical study and other screening procedures where data set at hand is frequently
based upon an individuals score on one or more screening variables. Arnold et al. (1993) and
Cohen (1991) provide examples and a review of the literature in this area, respectively.

The rest of the paper is organized as follows. In section 2 we derive our proposed family of
distributions. Several properties and a possible extension are provided for the family. Section 3
provides an application of the family of distributions using a constrained regression problem.
This paper is concluded in section 4 with brief discussion.

2. The Family of Distributions

The present section is devoted to the study of the distribution and density functions of the
singly truncated skewed-normal random variables. Properties of the distribution are also
investigated, together with a graph of the possible shapes of the density.

2.1. Truncated Skew—-Normal Distribution

In what follows we write ®(-) and &(+) to denote the standard normal distribution
function and the standard normal density function, respectively. For probabilistic derivation of
the truncated skew-normal distribution, following theorem is useful.

Theorem 1. Let U and V are independent standard normal random variables. If Z=|U |,
the density function of Z given V{(©Z, for- any real ©, is
co ¥(2)0(62), 250, 3)

where cg'=1/4+1/(2n) tan ~'O.
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Proof Pr(Z<t| V<OZ )= Pr(Z<t, V<6Z)/Pr(V<62) =2 fo'q>(z)q>(ez)dz /Pr(V<02)
and (3) by differentiation with respect to ¢ Since Pr(V<0Z )=2f0oo f;CP(v)(l)(z)avaz
=1/2+1/=n tan ~'O,

Definition 1. A random variable Z is a singly truncated skew-normal random variable with

the lower truncation point at 0, written Z~ 7SN (0 ), ©e(—o0,00 ), if its probability
density function is

Az ;8)=ce ¥(2)2(02), 2>0. 4)
The following properties follow immediately from the definition.

Property 1. The TSN *(0) density is the half standard normal density, the density of U |,
where U~N(0,1).
Property 2. As © — o, f(z;0) tends to the half standard normal density.

Property 3. If Zis a TSN*(6 ) random variable, then Z*=—Zis a TSN ~(6) random
variable having density

z";0)=co ®(27)0(—062%), Z*<0. 5
Property 4. The density (4) is strongly unimodal, ie. logfz ;©) is a concave function of z.

Theorem 2. Let U and V be independent standard normal random variables. Then
o 1 * +
Z =[ + ] ~ TSN 7 (0),
TVt griss V| ~TSN©) o
. —0 1 - -
Z =[ Ul+ 14 ] ~ TSN ~(8),
Vi+e? U+ TTie ©)

where [X 1% and [X ] “denote singly truncated X random variables with the lower
truncation point at zero and the upper truncation point at 0, respectively.

Proof Letting a=06(1+062) 12 B=(1+6 %) 2 we have
Pr(Z <z) =E[Pr(Z <z ||UI|, Z>0)1]

= 2f0°°Pr(Vs (z—aw)/B ) (u) du |Pr(W>0)

= 2["o( (z—aw)/B) o(x) du /Pr(V <6 U,

and from the relation a’+B%=1 and Pr(V <6 |Ul)=1/2+1/n tan ~'O, given in the
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proof of Theorem 1, it easily follows that

20(2 ) [, (218%) ~Veexp(— (u—a2) */(28 %)}du
(1/2+1/x tan ~!©)

=cod(z ){1—@(——%z)}=ce¢(z )0(0z ).

_d _
e Pr(Z <z) =

Similar proof holds for the derivation of the density (5) of the random variable Z *.

Theorem 2 provides an acceptance-rejection technique which generates a random variable Z
with the density (3) that is the following one. Sample U and V from independent N(0,1)
distribution. If a (U |+ BV >0, then put Z=a |U |+ BV, otherwise restart sampling a new
pair of variables U and V , until the inequality a |U}+ BV >0 is satisfied (a, B figuring

in the proof of Theorem 2). The same technique applies to generate a random variable Z*
with the density (5).

Corollary 1. Let (Y,,Y,;) be a bivariate normal random variable with standardized
marginals and correlation p, and let ©(p)=p/V1—p?% Then the following conditional
distributions are obtained:

Y 1 (Y; >0, i=1,2) ~ TSN*(6(p)) and Y, | (Y; <0, i=1,2) ~ TSN~(6(p)).

Proof. Let V=(Y ,—pY)/V1—p? then V and Y, are independent standard normal

variables. Further one can express Y, as Y,=(0(p)Y,—U)/V1+6(p)? where
U~N(0,1) is independent of Y ;. Using the distributions, we see that Theorem 1 gives

Y41 UKo@Y4 = Y4 IYo(Y =YD= Y, (Y >0,Y;,>0) ~TSN*(8(p)),
where Y4 =Y ,|. Now, Property 3 gives that — Y4 | V<O(p)Y4 ~ TSN ~(8(p)).
Since — Y{ | V<O(p)Y] =— Y4 |V, o(Y4+Y )= Y, (Y <0,Y,<0)), we have the

results.

When a class of bivariate distributions parameterized by (u,,11,,0%,0%,p ) are
considered, using the standardized Y, and Y, variables we define X ,=o0,Y;+un,; ,

i=1, 2. It is clear that the conditional distributions obtained from Corollary 1 depend only
on the population mean 1 ;, the standard deviation 0, of X, and p. This implies that

Corollary 1 enable us to make inference for untruncated marginal distribution of X ; when
X, and X, variables are truncated in each form of the condition in Corollary 1, but only
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truncated X ; values are observed.

Let denote by F(z ;0) the distribution function of (4), i.e.

F(z;0) =cq f:f;@(tﬂb(u)auat

0 t o t
=co | [7 [ otroiauae— [ 7 [ otretau.
Using the properties of the function T4, a), we have
F(z;0)=cq[®(2)—2T(2,0)—1/2+= ~tan ~!61/2, 2z > 0,
where T(h,a) is the function studied by Owen(1956) which gives the integral of the standard
normal bivariate density over region bounded by lines x=#%, y=0, and y=ax in the (x,y)
plane. A computer routine which evaluates 7(%,a) has been given by Young and Minder
(1974). It is known that 7(k,a) is a decreasing function of %2 and TX(—hk,a) = T(k,a),
T(h,—a) = - T(h,a), TXh,—a) = - T(h,a), 2 T(h1) = ®(WO(—4h), and 2 T(0,a) =

n “!tan “!a. From the Property 3 and the properties of the function 7(%,a), we get the
following corollaries.

Property 5. If H(z*©) is the distribution function of Z*~ TSN(—8) having density (5),
then F(z, 6)=1—H(z"90), where z"=—2z.

Property 6. F(z,1)= —g— o(2) 2.

2.2. Moments
For computing the moment generating function of Z~ TSN *(©), we use the next result.

Lemma 1. Let Y, and Y, be bivariate normal, with zero means, unit variances and
correlation coefficient p. Then the bivariate normal orthant probability

L(a,b;p)=Pr(Y >a, Y, )b)=Pr(U< (pY,—a)/V1—0p% Y, b, (D
where Uis N(0,1) and independent of Y ,.

Proof. Let U=(Y ,—pY,)/V1—p? Then Uis MNQO,1) and independent of Y, for the
covariance of U and Y, is zero. Thus, by symmetry of the distribution of U,

L(a,b;p)=Pr(U >(a—pY,)/[V1—02 Y >b)=Pr(IK(pY,—a)/V1—p2 Y,>b).
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Various methods for computation of the bi-variate normal integral L(a,b ;p) are suggested
by Sowden and Ashford (1969) and Joe (1995), among others. An extensive set of tables were

published by National Bureau of Standard in 1959 to give L(a,b;p) for a,b=0(0.1)4.0 to
six decimal places for p=0(0.05)0.95(0.01)1 and to seven decimal places for
p=0(0.05)0.95(0.01)1.

Theorem 3. The moment generating function of Z~ TSN *(6) is
My (D=cq e *{(2(a)+0(b) )/2— T(a,1/0)}, )
where @ = 6/V1+62 and b=t. |

Proof E e? = cefe” b(2)0(02)dz=c¢ e f_tq)(z)d)(ez-i-et) dz.
Putting ©z+O0t=(pz—a)/V 1—p?%, we see, from Lemma 1, that
2 (o]
E Zt _ %2 L(_ ot , —t; )
¢ TCec Vite? Vi+e?
Using the relation between L(-), 7(-), and ®( ) functions (see, for example, Sowden

and Ashford (19€7)) :
L(—a,—b;p)=L(a,b;p)+®(a)+2(b)—1

L(a,b30)=1-1/2 [®(a)+2(B)]— T(a, c,)— T(b, cy),
where ¢,;=(b—pa)/(aV1—p?) and c,=(a—pb)/(W1—p?),

we have the result.

Hence, after some algebra, we obtain

c 2] _.c< =) —
Hz1= 57 (14 1557) wma V)= (e ley)-mz1n @

2.3. An Extended Class of Densities

The class of truncated skew-normal distribution TSN§={TSN*(©): 6=(— o0, )} has
been introduced and studied its basic properties analytically. One can extend the class 7SN po
by introducing an additional shape parameter 3.

Theorem 4. Let U and V are independent MN(0,1) random variables. If Z=|U|, the
density function of Z conditionally on V<{(©Z+7, for any real © and 3, is
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Co, (1>(z)<1>(9z+§), z>0, (10)
where c3i= {0@/N1+6)+2T(/V1+67%,6)}/2.

Proof Pr(Z<t| V<KOZ+T )=2f0t(1>(z)d>(ez+§)dz [Pr(V<0Z+7)

and (10) by differentiation with respect to £ The normalizing constant is obtained from
Pr(v<6z+1) = Pr{(v—0 [UDNT1+0% < YV1+6? } =Pr(W<i/V1+67), where
W= (V=0 |U)/V1+62 ~SN(—© ). The distribution function of W given by Azzalini
(1985) yields Pr(W<yV1+6% =0V 1+69+2T(/V1+6%0 ). This gives c5i=
oV 1+eD+27¢/V 1+0%,6 )}/2

This broader class of distributions defined by the density (10) will for brevity be written
TSNE ,={TSN7(6,1) : —00(B00, —00o(T{0 }. Note that, for ¢=0, TSN*(8,%) is

equivalent to 7SN *(8). Figure 1 shows the shapes of (3) and (10) for various values of ©
and 0. An acceptance-rejection technique which generates a random variable Z with the
density (10) that is immediate from Theorem 4: Sample U and V from independent N(0,1)
distribution. If V<O |U|+%, then put Z=|U|, otherwise restart sampling a new pair of
variables U and V , until the inequality V<O |U|+71 is satisfied.

| /AN

AW, \ TSN*(2) el
TSN*(1, —2) TSN*(-2)
A T N TSN*(-2.1)
TSN*(-1)
: TSN*(-1,2)

1 t 2 . a5 1 1.8 . 2.5

Figure 1. The density functions of Z~ 7SN ¥(8) and Z~ TSN *(8,7).
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3. Abpplication to A Constrained Regression

In practice, one will often work with the family of distributions generated by the
transformation X=2A;+\,Z  where A,>0 and Z~TSN7¥(©,1). The density of the
random variable X, written X~ TSN *(6,A ,A,,0) is

Ax 30,0 LAy, 3 )=cCoy M3t 0((x—A D/A)OO(x—A )/A,+7), x>A . (11

A well-known property of the normal distribution is that, if Y~MX, 02) where X is a
normal random variable, the posterior distribution of X is still normal. An analogous fact is
true if a prior X has the probability density function (11). Some simple algebra shows that
the posterior density function of X given that Y=y is still of type (11) with (©,A,A,, %)
replaced by

oA
02423

y/o 2+ A, /A%
1/024+1/0%
Note that the parameter © shrinks towards 0, independently of y, and that the updating

O(1+A%/0?) "1 (1/024+1/A%) "2 14+ (y—A )

formulas of the parameters A | and A , are the same as the normal prior case.
Consider now a constrained linear regression setting

vi=Bx+tBxgte;, i=1,-,n,
where B ;>0 and B,>0 and e,s are iid N(0,t?%) with known t2 The constraint of
positive signs, B,>0 and B ,>0, in regression coefficients frequently arises in econometric
work. For example, an economic theory says that, as explanatory variables, the disposable
income and the rate of housing price change have the same positive effect on the dependent
variable, the housing price.

With a bivariate normal prior distribution on B=(B;,B,), B~N,(0,Z ), and the prior
knowledge B ;>0 and B ,>0, we obtain constrained prior distributions of B ;/0; and B,/o,
from using Corollary 1:

By/o 1 B1>0,8,50 ~TSN™(6(p)) and B,/o, | B>0,8,>0 ~TSN™(6(p)),
where ©(p) =p/V1—pZ and ~={0,} are known with 0 ,=0% for j=4k 0 ,4=0,0,0p
for j#k The joint posterior becomes
~U B =B =By Y@+ 1 8Y o] 2

P(B | B 1>0,B 2>O,data Joc e }l;[lcp(e(p)p’ j/O j),

where data={y(; %, %4 ; t=1,,n}. Marginal densities of B, and B, are complicate.

Instead simple algebra gives the Gibbs sampler that can be used for inference of the
regression model. To apply the Gibbs sampler, we need the conditional posterior distributions

which, from above conjugacy property of the 7SN *(©,A,A,,%) density (11) with the
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normal distribuﬁon, are
B,1 (B, B,50,8,50,data) ~ TSN*(6 @ AP A {P,3 D)
Bg | (B 1;.[3 1>0,B 2>0,ddtd) -~ TSN+(9 (2),)\(12),}\.(22),g (2)),

where

n

le 1y i—Bax 2,~)/T 2

~ me‘(yi‘ﬁlxn')/'fz
)\(11)_:__ 1= - —_ =1
,lezh_/T 2+1/0?%

§1x22i/12+1/022

(2)
A l ’

A (21)=__ ( tleZh./T 2+1/021) —1/2’ A (22)= ( ,Z:lxzz"/r 2+1/022) —1/2’

6 P=0(p)(1+0} lzjlle,-/T 2, ©@=0(p)(1+0} glxzz,-/T 9,

n n
0y 2%y, —Byxy) Ozzxm(yi“ﬁlxu)
4 () 1= T (2) — =1
SHEREE 0% Syt v
1= : 1=1 :

The Gibbs sampler proceeds by alternatively sampling from these two TSN T distributions
using the acceptance-rejection sampling scheme described in Subsection 2.3.

4. Concluding Remarks

We proposed a singly truncated parametric family of distributions that strictly includes a
truncated normal distribution, and studies its properties, with special emphasis on the relation
with bivariate normal distribution. In particular, we show that it defines conditional
distributions of a truncated bivariate normal distribution. This enables us inference for the
marginal distribution of a bivariate normal random variables when they are singly truncated
(as the example given in section 4). The likelihood equations for a simple random sample of
size »n from Z, defined by Definition 1, are readily written down. To compute MLE of ©, we
can use either Newton-Raphson method or the Nelder-Mead algorithm. Because these
procedures are quite standard, we omit the details for brevity.

The family of distributions is potentially relevant for practical applications, since there are
far fewer distributions available for dealing with truncated data than in untruncated case.
Therefore, a further study pertaining to developing applications of the family of distributions
in real data analyses is needed, and is left as a future study of interest.
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