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Recovery Levels of Clustering Algorithms Using Different
Similarity Measures for Functional Data

Seong San Chael), Chansoo Kim?), and William D. Warde3)

Abstract

Clustering algorithms with different similarity measures are commonly used to find

- an optimal clustering or close to original clustering. The recovery level of using
Euclidean distance and distances transformed from correlation coefficients is evaluated
and compared using Rand’'s (1971) C statistic. The C values present how the

resultant clustering is close to the original clustering. In simulation study, the
recovery level is improved by applying the correlation coefficients between objects.
Using the data set from Spellman et al (1998), the recovery levels with different
similarity measures are also presented. In general, the recovery level of true clusters
was increased by using the correlation coefficients.

Keywords : Agglomerative clustering algorithms; Correlation coefficients; Rand’s C statistic
1. Introduction

In some clustering applications, a transformed sample correlation type instead of Euclidean
distance is used as a dissimilarity measure if variables rather than objects are clustered.
When the correlation coefficients are used as similarity measures, small values are regarded
as very dissimilar, while large positive values are regarded as very similar. Negative
correlations are replaced by their absolute values in some clustering applications (Johnson and
Wichern, 1998).

Eisen et al (1998) found that the correlation coefficient conforms well to the intuitive
biological notion to express two genes and captures similarity in shape but places no
emphasis on the magnitude of the two series of measurements. Perou et al (1999) used a
form of the correlation coefficient that is exactly equal to the Pearson correlation coefficient as
a gene similarity metric. Hadjiargyron et al (2002) established clusters by grouping genes
using the Pearson correlation coefficient after excluding inconsistent expression patterns
(outliers).
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Wu (2001) suggested the use of the Pearson correlation coefficient and Spearman rank-order
correlation coefficient to measure the similarity of each gene’s profile in finding a match
between genes. The rank-order correlation coefficient may be used rather than precise
numerical quantities if a lower specification (or robust against outliers) is wanted (Bickel
(2003)). Cherepinsky et al. (2003) showed that a shrinkage-based correlation coefficient
improves the accuracy of the cluster analysis.

The recovery level of agglomerative clustering algorithms is investigated by using different
dissimilarity measures, Euclidean distance and the distance transformed from -correlation
coefficients. The distance calculated from different types of correlation coefficients is

constructed by using the formula d,-j = ,/211 —%j ), where Yij is the correlation coefficients

between i-th and j-th objects. To measure the recovery level of clustering algorithms using
different similarity measures, Rand’'s (1971) C statistic is used. DuBien, Warde and Chae
(2004) show that the mean and variance of Rand’s C statistic for any K given by Fowlkes
and Mallows (1983) are special cases of the mean and variance of C given by DuBien and
Warde (1981). It evaluates the results of cluster analysis based on how they partition the data
points in the concept of correspondence and is a measure of similarity with 0.0 < ¢, < 1.0.
When the partition produced by clustering algorithm is identical to the structure within the
data treated, then (i is 1.0. The formulation of the ( statistic based on the incidence matrix

[n;;] is given as follows:

Fie K X
G = (@‘%(;n"’ + J;n?jH ,Ej"?f
@)

where n;; is the number of data points in common between the i—-th cluster formed from one

clustering and the j-th cluster formed from another clustering, ¢,j = 1,2,..., K, ..., N. Further,
the resulis of using the different similarities are examined and compared on the cell cycle data
from Spellman et al. (1998).

2. Similarity Measures and Clustering Algorithms

Let N be the number of data points with p variables. Then an N Xp matrix of
measurements, say X, might be represented as X " indicating that there are /N data points in
X. In order to examine and compare without standardization, three different transformations

(statistical standardization, Mahalanobis standardization and range standardization) were
investigated. However, only the results from clustering algorithms by using the range
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Ty

transformation, z; = maz (zl) —min (ml) ’

where T; is a measurement of the [-th variable on

the i-th object and x; is the [-th variable with /V objects in X, are presented.
For either X or Z, a cluster, ¥, is simply a nonempty subset of the object space, and a
clustering, Y= (y1, %, --,Yn, -, Yx ), is any partition of the object space. The number of

clusters, K, contained in a clustering shall be referred to as the size of the clustering. Some

notations useful for a cluster, a clustering, an hierarchy and a clustering algorithm can be
found in Chae and Warde (1991).

In this study, measures of distance, d, imposed on the data points are the Euclidean and the
transformed distance from the correlation coefficients between two objects for any series of
measurements, Using the fact that the dissimilarities defined by ,/1 —r;; are Euclidean if the

similarities r;; satisfy 0 < r; <1 (Gower, 1966), the formula d; = ,/231——7,-]-5 are used to

transform the Pearson correlation coefficient,

p — —_

(z; _xi)(xj'— j)
Y = ; : -

1
J P — _ 2’
\/2 mil—xi) Z(mjl—xj)
=1 =1

— 2
where T; = 2 Ty, i,j=1,2,...,N, to the Euclidean distance (Johnson and Wichern, 1998).
=1

Eisen et al. (1998) used :;:-: = 0.0; Cherepinsky et al. (2003) used a shrinkage-based estimator,

'r:z:_,-, 0.0 < 7 <10, instead of z_i; Bickel (2003) used the Spearman rank-order correlation
coefficient instead of <;;. The shrinkage-based correlation coefficient suggested by
Cherepinsky et al. (2003) is excluded since it is not easy to obtain a 7 that satisfies the
condition 0.0 < 7 < 1.0 for real data set. In the primary study, d,-j = m and

dy=/2(1—rj;) were also considered, however, the recovery levels of the clustering

algorithms were not as good as using the transformation, d,-j= w/211 — % ).

Let Y represent the "true” structure of the N data. points with K clusters and YINE] pbe g
certain arrangement of Y with KA clusters. Let Y’ denote a clustering that result from
applying an agglomerative clustering algorithm to the /V data points with number of clusters
K. Then Rand’'s C(Y,Y) value is a measure of the recovery level of the clustering
algorithm to the true structure for K.

For any clustering YKl in the hierarchy, if the distances d,;, dy, and dj, between pairs of
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clusters ¥, ¥; and ¥ are obtained recursively from clustering Y{N’K“], K< N, then the
distance between the new cluster Y;) = ¥%;Uy; and any other cluster y, € YWH can be

computed from the following formula:

1~ 2 1—-6-—-2
digjyk = ﬁ2+ Td+ ﬁ2 T diy + Bdy;

where d;; < dy < dj. This formula represents a two parameter (8, m)—~family of agglomerative

clustering algorithms derived by DuBien and Warde (1979).

Since the purpose of this study is to survey the clustering methods available to cluster
objects on the basis of their expression patterns, six clustering algorithms are chosen from
the (B, 7)-family of agglomerative clustering algorithms. In the (B, 7)-family, (.0, —.5) is
known as single linkage; (.0,.0) as average linkage; (.0,.5) as complete linkage; (—.25,.0)
and (—.5,.0) as representations of the flexible strategy; (—.5,.75) is the recommendation
by DuBien and Warde (1987).

3. Simulation Study

3.1 Design of Simulation

Few studies provide the method for clustering functional data that is measured over a series
of p time points in the experiments. In this study, the simplest auto- regressive model, which
is a stationary time series, is chosen to describe a further application for clustering gene
expression data. The other types of simulation model may be considered depending on the
characteristics of data treated. The Rand’'s C values that represent the recovery levels of
clustering algorithms for true structure with different similarity measures were calculated
using the following steps:

1. Simulated data Xyx, V=150, p =24 was generated using the model,

X = Ui(k)tZit + W,
W, = ¢I/K,t—-l+€t1 € ~ N(O,Uf), C'ov(WEt,ét) =0,

2

ag
Ve )= —— —1< <1,
aT’(Wt) 1_¢2; ¢

where Z, ~ N(0,1), i=1,2,..,N, t=1,2,..,p. In fact, W, that is the mean at time
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point t if the i-th object belongs to the k-th cluster, ¥ =1,2,...,5, in Spellman’s (1998)
data set, is used for the autoregressive model (AR(1)) where ¢ satisfies the stationary

condition, then W, is used instead of W to generate Xj;

2. U?(k)t, the constant to control the variance of X; that belongs to the k-th cluster, is set
as 0.5,0.75;

3. 7y, the split or the size of the k-th cluster generated from each population;

4. The distance converted from each correlation coefficient between each pair of objects in X

was computed and stored in lower triangular matrix order by rows as the vector [i of

length ({2\1) N

5. Each of the six clustering algorithms was applied to 2} to produce Y ';
6. For each of the clusterings Y ' generated from above steps, C (Y,Y') was calculated

for the six clustering algorithms.

For each setting of the (a?(k)t, Ty;MoNg;N;Ns ), the above sequence of steps was replicated
100 times and the sample mean of the C statistic, Z', was computed for the six clustering

algorithms. The C value quantifies the recovery of true structure by applying the six

clustering algorithms for each setting of (af(k)t, N NN Ts ) -

3.2 Results from Simulation

The results from the simulation study are not independent of the fixed structural parameters
which were specified previously. However, the results are discussed in terms of changes in
parameters (a?(k)t, nyinginangns ), the transformation and the clustering algorithms with
different similarity measures. Since the results from the single linkage are different from other
clustering algorithms, it is excluded from further discussion.

Tables 1-2 give the recovery results of the six clustering algorithms applied to the original
and the range-transformed data using the Euclidean distance (ED) and the correlation

coefficients. Although several possible settings for (n;;ng;nangns) were investigated, only the
results from n, =30, for k=1,2,..,5 and (nynynyngng) = (24;37;20;55;24) are presented.
As shown in Table 1, the difference in recovery represented by Z’( Y,Y’) is mainly due to
the settings of a?(k)t designed into the original data. The recovery levels of the six
agglomerative clustering algorithms increase as a?(k)t decreases. For the case of equal size,

the recovery levels with the three correlation coefficients are higher than with the Euclidean
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<Table 1> The C ( Y,Y') for the original data

Data af(k)t (B,7) ED Eisen | Pearson |Spearman

(0.0, -0.5) 2272 2414 2372 .2289
(0.0, 0.0) .8548 .9166 .9059 .8918

(0.0, 0.5) .8894 .9201 9219 .8973

(-0.25, 0.0) | .9143 .9483 .9498 .9357
(-0.5, 0.0) 9151 .9468 9461 .9302
(-0.5, 0.75) | .8935 9224 .9255 .8988
(0.0, -0.5) 2271 .2287 .2292 .2288
(0.0, 0.0) 7729 8414 .8480 .8329

(0.0, 0.5) 8247 .8386 .8433 .8223

(-0.25, 0.0) | .8553 .8836 .8856 .8632
(-0.5, 0.0) .8613 .8828 8797 .8593
(-0.5, 0.75) | .8312 .8348 .8385 .8185
(0.0, -0.5) .2276 2742 2749 2723
(0.0, 0.0) .8857 9079 .8956 .8703

(0.0, 0.5) .9046 9077 .9000 .8673

(-0.25, 0.0) | .9249 9273 .9239 .8995
(-0.5, 0.0) 9178 9213 9166 .8919
Unequal (-0.5, 0.75) | .8783 .8785 8737 .8631
(0.0, -0.5) 2732 2741 2745 .2701

(0.0, 0.0) .8082 .8397 .8381 .8161

(0.0, 0.5) .8363 .8358 .8457 .8196

(-0.25, 0.0) | .8618 .8670 .8687 .8463
(-0.5, 0.0) .8582 .8588 .8619 .8454
(-0.5, 0.75) | .8231 .8246 8274 .8083

0.50

Equal

0.75

0.50

0.75

distance. Among three correlation coefficients, the recovery levels using the Spearman
correlation coefficient are lower than those using the other correlation coefficients. In
particular, the recovery levels using the Spearman correlation coefficient is the lowest for the
case of unequal size.

In Table 2, the effect of the range transformation is examined and compared to using no
transformation. The recovery levels decrease or increase depending on the clustering
algorithms if the range transformation is used. The use of the Spearman rank correlation
coefficient is more robust against outliers when the average linkage algorithm is applied to
the data with unequal size of clusters. That is why Bickel (2003) suggested using average
linkage with the Spearman rank correlation coefficient. However, Kojadinovic (2004) pointed
out that it enables only the detection of monotonic functional dependencies.

As shown in Tables 1 and 2, the calculated C(Y; Y ") values show essential differences
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<Table 2> The C (Y, Y') for the range-transformed data

Data  |o7): (B, m) ED Eisen | Pearson |Spearman
(0.0, -0.5) 2271 2312 2276 2277
(0.0, 0.0) .8342 .8703 .8647 .8538
(0.0, 0.5) .8784 .8832 .8800 8772
(-0.25, 0.0) .9087 .9095 .9099 .9047
(-0.5, 0.0) .9100 9076 .9082 .9045
(-0.5, 0.75) .8848 .8859 8822 .8804

0.50

Equal 0.0, -05) | 2270 | .2283 | .2285 | .2290
0.0, 0.0) | .7673 | 8117 | .8184 | .8097
075/ (00, 05) | 8224 | 8276 | .8329 | .8265
10,25, 0.0) | .8519 | .8531 | .8560 | .8495
(-0.5, 0.0) | .8495 | .8530 | .8582 | .8487
(<05, 0.75) | 8215 | 8311 | .8236 | .8245
0.0, -0.5) | .2743 | 2776 | .2778 | .2689
0.0, 0.0) | .8776 | .8855 | .8852 | .8801
05000, 0.5 | 8924 | 8906 | .8912 | 8694
V0,25, 0.0) | 9113 | .9175 | .9149 | .8998
(-05, 0.0) | .9022 | .9017 | .9104 | .8976
(-05, 0.75) | 8763 | .8659 | .8747 | .8665
Unequal

(0.0, -0.5) .2733 2741 2741 .2701
(0.0, 0.0 7969 .8326 .8314 .8161
(0.0, 0.5) .8226 .8176 .8328 .8196
(-0.25, 0.0) | .8560 .8553 .8558 .8463
(0.5, 0.0) .8479 .8475 .8490 .8454
(-0.5, 0.75) | .8171 .8146 .8180 .8083

0.75

depending on the similarity measures between objects. It implies that the use of the
correlation coefficient in applying the clustering algorithm has a significant effect on the
recovery of the true clustering. Based on the recovery levels, more similar clustering is
retrieved when the correlation coefficient instead of the Euclidean distance is used as a
measure between objects.

4. An Example

An application using a set of data that includes yeast (Saccharomyces cerevisiae) genes
from Spellman et al. (1998) is given. The oprimary data can be obtained at
http://cellcycle-www.stanford.edu. In their normalization procedure on the primary data, a total
of 800 yeast genes are identified as being periodically regulated and meeting an objective
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minimum criterion for cell cycle regulation. The statistical methods used in analyzing gene
expression data might be found in Kim (2004).

For convenience, 630 genes with 24 variables (the results of a series of 24 time points in
the experiments) are taken out of the identified 800 genes that have no missing values on the
data set with five clusters. According to Spellman et al. (1998), these five clusters
approximate the commonly used cell groups and provide a natural basis for organizing yeast
gene expression in the literature. The sizes of clusters to which it belongs are (102-159-
82-231-56) for $/G2, G2/M, M/Gl1, Gl and S groups of genes.

As shown in Table 3, the five clusters are identified by the agglomerative clustering
algorithms with different similarity measures on the original data and the range-transformed
data. The recovery level of identified clusters in Spellman et al. (1998) is increased by using
the correlation coefficients instead of using the FEuclidean distance on the original and the
range-transformed data. For discussion on the effect of range transformation, the recovery
levels of the six clustering algorithms are first discussed for the original data. The recovery
levels of using the Eisen correlation and the Pearson correlation coefficients are the same
since the mean of each gene by the normalization procedure is close to 0.0. The use of
complete linkage, (.0,.5), and one of the flexible strategies, (—.25,.0) with the correlation

coefficients might be recommended instead of the average linkage for the cell cycle data of
Spellman et al. (1998). Above all, the results of using the three correlation coefficients are
better than those using the Euclidean distance.

At this point, the results from the clustering algorithms are discussed for the
range-transformed data. The recovery levels are increased or decreased, depending on the
different algorithms when the results are compared with the results with the range
transformation. No single clustering algorithm or transformation has proven free from
ambiguity in establishing well specified and carefully validated procedures in cluster analysis.
However, the use of average linkage with the Spearman rank correlation coefficient on the
range-transformed data gives the best recovery level for the cell cycle data of Spellman et al.
(1998).

As we have little a priori knowledge of expected gene expression patterns, it is difficult to
say one specific clustering algorithm which is best overall. The choices of a clustering
algorithm and a measure of similarity depends on the structure and characteristic of the data.
Comparing the recovery levels of clustering algorithms presented by Rand’s C value, the use
of the correlation coefficients recovers the arbitrarily defined clusters by Speliman et al. (1998)
better than using Euclidean distance.
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<Table 3> The sizes of clusters and Z’(Y, Y’) for Spellman’s data

Data Similarity Group S/G2 | G2/M | M/G1 G1 S R Yo

Measures (,B, W)/SIZGS 102 159 82 231 56

(0.0, 0.0) 2 362 5 258 3 359 | .6561

(0.0, 0.5) 143 | 129 28 326 4 409 | .7178

Euclidean | (-0.25, 0.0) | 37 186 46 287 74 341 | .7036

o (-0.5, 0.0) | 100 | 157 82 271 20 369 | .7248

r (-0.5, 0.75) | 210 | 146 57 112 | 105 | 296 | .7133

~ (0.0, 0.0) 93 166 28 179 | 164 | 290 | .7221

. Eisen (0.0, 0.5) 107 | 145 | 121 | 171 86 382 | .7821

) (-0.25, 0.0) | 164 | 184 | 105 | 143 34 384 | .7747

i | Pearson ThETaOY | 145 | 211 45 145 | 84 | 345 | .7565

n (-0.5, 0.75) | 72 122 | 122 | 208 | 116 | 339 | .7633

a (0.0, 0.0) 7 195 85 252 91 340 | .7225

1 (0.0, 0.5) 172 76 116 | 161 | 105 | 311 | .7417

Spearman | (-0.25, 0.0) | 116 | 132 | 160 | 163 69 320 | .7573

(-0.5, 0.0) | 109 | 193 82 162 84 347 | .7553

(-05, 0.75) | 55 211 | 130 | 147 87 319 | .7450

(0.0, 0.0) 2 321 2 302 3 329 | .6069

] (0.0, 0.5) 3 169 | 105 | 293 60 266 | .6408

Euclidean | (-0.25, 0.0) 120 166 53 246 45 383 7443

a (-0.5, 0.0) 88 181 37 249 75 365 | .7367

n (-0.5, 0.75) | 139 98 113 | 172 | 108 | 264 | .7342

g (0.0, 0.0 47 187 | 122 | 181 93 319 | .7455

e (0.0, 0.5) 211 | 111 86 181 41 297 | 7228

Eisen | (-0.25, 0.0) | 141 | 159 | 136 | 102 94 342 | 7558

¢ (-0.5, 0.0) | 173 | 179 92 144 42 330 | .7468

. (05, 0.75) | 137 | 143 | 122 | 132 96 304 | 7625

(0.0, 0.0) 85 106 | 108 | 250 81 394 | 7749

a (0.0, 0.5) 92 185 59 166 | 128 | 374 | .7709

n | Pearson | (-0.25, 0.0) | 170 | 102 | 132 | 156 70 352 | .7605

s (-05, 0.0) | 174 | 161 83 99 113 | 331 | .7580

f (-0.5, 0.75) | 94 180 | 122 | 201 33 392 | .7696

o (0.0, 0.0) 96 218 90 209 17 436 | .8002

, (0.0, 0.5) 172 76 116 | 161 | 105 | 311 | .7417

| Spearson | (-0.25,0.0) | 131 | 126 | 119 | 147 | 107 | 352 | .7529

(-0.5, 0.0) | 109 | 193 82 162 84 347 | 7553

(-0.5, 0.75) | 55 211 | 130 | 147 87 319 | .7450

* : maximum numbers of genes which are assigned to the “target” clusters as defined by
Spellman et al. (1998)
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5. Concluding Remarks and Future Study

Several clustering algorithms with different similarity measure are commonly used to find
an optimal clustering or close to original clustering. In applying a clustering method, the first
step is to choose a mathematical description of similarity in the behavior of two objects.

Different similarity measures between objects are applied to produce groups with similar
patterns of expression which form the basis of a classification scheme useful in later studies
for predictive purposes. The recovery levels from agglomerative clustering algorithms using
Euclidean distance and different correlation coefficients are evaluated and compared to using
Rand’s C values.

In the biological literature, the correlation coefficient conforms well to the intuitive biological
notion of similarity between two genes, since this statistic captures similarity in shape. Few
studies provides experimental information whether or not a transformation is necessary or
desirable. According to our primary study, the Mahalanobis transformation that takes into
account the off diagonal elements of the correlation matrix should not be used if any form of
standardization is necessary on sample data with a large number of variables. In applying the
agglomerative clustering algorithms, the effect of transformation was examined and compared
to results without transformation for the various structural settings of the parameters.

In simulation study, (—.25,.0) and (—.5,.0), which are the representations of the flexible
strategies, give better recovery level when the five agglomerative clustering algorithms using
different measures are applied to the same data with or without transformation. Differences in
recovery levels are found between the original and the range-transformed data.

Using results from simulation and application to Spellman’s data, the recovery of true
clusters as evaluated using Rand's (' values was increased by using the correlation
coefficients instead of the Euclidean distance between objects. If we have enough knowledge
on expected gene expression patterns, we might say that the shape of clusters formed by one
specific clustering algorithm is the best for this data set that reach the goal of the research.

For further research, the robust cluster analysis by using robust estimator is considered.

Our focus is on the way to find the robust estimators of 7, mnot only for %;, since the

correlation coefficients suggested by Bickel (2003) and Cherpinsky et al. (2003) work only for
the special cases according to our study.
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