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Abstract

The marginal likelihood has become an important tool for model selection in
Bayesian analysis because it can be used to rank the models. We discuss the
marginal likelihood for Poisson regression models that are potentially useful in small
area estimation. Computation in these models is intensive and it requires an
implementation of Markov chain Monte Carlo (MCMC) methods. Using importance
sampling and multivariate density estimation, we demonstrate a computation of the
marginal likelihood through an output analysis from an MCMC sampler.

Keywords : Poisson regression, Metropolis—Hastings sampler, multivariate density estimation,
importance sampler

1. Introduction

The marginal likelihood is now an important tool in Bayesian model selection and model
averaging. The computation of the marginal likelihood has attracted considerable interest in
the recent Markov chain Monte Carlo (MCMC) literature. A recent and very comprehensive
review is given by Han and Carlin (2001). In this article, we address the problem of
computing the marginal likelihood for selecting a model.

Let M, and M, be two models, and let d be a vector of observations. The model specifies
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a structure for 4|2 with a proper prior on P(®). Then the marginal likelihood for M, denoted
by M d), is given by My( d )=P(dIMp= [ P(dI2, M)P®), k=1,2.

If P(d|M,) is larger than P(d|M,), M, is preferred to M,. The usefulness of the marginal
likelihood is associated with the Bayes factor which is used in Bayesian hypothesis testing
problems. In fact, the Bayes factor is P( d|M,)/P( d|M,). This is a measure of strength of the
evidence provided by the data for M, relative to M;; see Kass and Raftery (1995). As an

application, one can use the marginal likelihoods to select the best model within a set of
candidate models. The model with the largest marginal likelihood is the best.

Much work has also been done on the direct estimation of the marginal likelihood in general
non-nested model setting (Chib (1995); Gelfand and Dey (1994)) and on the estimation of
ratios of marginal likelihoods especially in the setting of nested models (Chen and Shao
(1998); DiCiccio, Kass, Raftery and Wasserman (1997); Meng and Wong (1996); Verdinelli and
Wasserman (1995)).

2. Computing Marginal Likelihood

Chib (1995) suggested an approach to compute marginal likelihood from the Gibbs sampler
output. But these methods work when the posterior conditional densities have simple forms.
For generalized linear models Chib and Jeliazkov (2001) extended the method of Chib (1995) to
obtain an approach to compute marginal likelihood from the Metropolis-Hastings (M-H)
sampler output. Nandram and Kim (2002) simplified the method by using the multiplication
rule of probability to exploit the hierarchical structure of models.

In this article, we address the problem of computing marginal likelihood for Poisson
regression models. Although the method is applicable generally, we choose to discuss it using
small area estimation where we first encountered this problem (see Nandram (2000) for a
review). We describe the negative marginal quasi log-likelihoods for two specific models that
are currently used for mortality data analysis and disease mapping.

Chib (1995) suggested an approach to compute marginal likelihood from the Gibbs sampler
output. It is well known that once the posterior distribution P(| d) is available, by Bayes’
theorem, we have

__P(dIQ)P(Q)
M(d)= el d) 2.1

Chib (1995) noticed that M(d) in (2.1) is invariant to choices of &; thus we can use any
Q value for our convenience, but he correctly suggested a high density point. One natural
choice is the posterior mode and a simpler choice is the posterior mean which can be easily
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obtained from an output analysis of any Markov chain Monte Carlo sampler. For generalized
linear model, (2.1) is difficult to compute because of non-conjugacy. He has shown how to do
this for the probit model, and because he used latent variables, the problem of non-conjugacy
disappears.

It is important for our work that even though M(d) in (2.1) is not defined if P(Q) is
improper, we can still find the value of M(d) provided P(R| d) is proper. When the P(R) is
not proper but P(Q| d) is proper, we use Q(d)=—log(M(d)), called negative marginal quasi
log-likelihood (NMQL), to rank the models.

We describe how to obtain the marginal likelihood and the negative marginal quasi
log-likelihood for Poisson regression models.

3. Poisson Regression Models
3.1 A Class of Generalized Linear Model

Let d; denote a non-negative discrete random variable, and #; be the sample size, fixed
by a design,d;<mn; i=1,-,N,j=1,,c.. We assume that d; given ©; are independent
with

Rdj0 ) =exp{ (O dj, ny} (3.1)

where ©; are unknown parameters. We assume that there are covariates, x,;, k=1, ,p—1
and x=(1,xy ,%,_ ;) . We also assume that there is a one-to-one function () such

that
g(eij)=xi7,"ﬁ+",‘+8j (3.2)

where v; and 6; are random effects. For the random effects we take
v,l¥2~idid M0,¥%) and 6, 0%~iid N(0, 0?). (3.3

The specification (3.3) induces a "borrowing of strength” which is desirable, and indeed a
popular idea in the small area estimation.

For the hyper-parameters B8,¥2,02, we take

B~N(B,,A,) or P(B)=1 (34)
and
Y7207 %~ iid T(n,/2,%,/2) (35)
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where B,4,,n, and §, are to be specified. For our purpose, we can tolerate a flat prior in
(3.4) so long as the posterior distribution is proper. Also with no prior information in (3.5), it
is standard practice to take n,=3%,=0.002.

The model specifications in (3.1)-(35) form a class of generalized linear models. If
d;19 ;~ind Poisson(n;6,),

P(eii’ d,'j, n,;,-) = d,;log(eﬁ) - nu9”+ d,,log(nv) - log(dv’)

Then, g(©,) is taken to be the natural parameter of this one-parameter exponential family,
20, = log(®6;) and the model in (3.1)-(35) is called a hierarchical Bayesian Poisson

regression model.
3.2 Descriptions of Two Models

We consider two Poisson regression models in the discussion which are popular in small
area estimation problem. Both models have the standard specification

djlAj~ind Poisson(nz\y), i=1,-,N,j=1,,c (36)

Typically for mortality data, d; is the number of deaths, #; is the population sizes, A; is

the age specific mortality rate in health service area 7 and age class j.
As the first model (Model 1), we take the link function to be

log)\v = x,’T_§+V;‘ and Vil02~iid N(O' 02)

where i=1,---,N and j=1,,¢c. The covariate x; is set to denote the age classes. We take

a locally uniform prior distribution on 8 and a proper diffuse prior on ¢2,
P(B)=1 and 072~T'(n,/2,%,/2) where n,=1%,=0.002.

This model, called the offset model, is commonly used for data analysis in small area
estimation. The joint posterior density for this model is

P@,x,ozl d) o exp[ﬁg{( x[B+v)d;— nyexp( 28 + v)}] (3.7)

x o‘Nexp{ﬁ - v%/Zoz}X(o'z) W2 lexp{~1,/20%).
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As a second model (Model 2), we take the link function to be

log(A ) = xB+v;+8;
where
v, |y2~iid N(0,¥?) and 8 0®~iid N0, 0%
and
P(B)=1 and ¥~ %, 0 % ~iid T(n,/2,3,/2),n,=5,= 0.002.

It is anticipated that &; can accommodate extra variation. The joint posterior density of this

model is
N ¢
P(B,v,8, Y2,02| d) o exp[ Z\]Z‘{( xTB+v,;+8,)d; — ngexp( x]B+v;+ )}

x Y"”exp(ﬁ‘i(—\'3~/2‘12)}x0'°exp{g;( - 53/202)} (38)
x (y~2) % lexp{—3,/2¥%x(c7?) /2= tayp{—1%,/20%}.

It is convenient to make the transformation
;= xR+ 5,

keeping all others untransformed. Then the joint posterior density is

P(E,X,Q,YZ,OZ! d) «< eXp[ﬁl’g{(V["“pj)d,‘j_ n,‘,'EXD(V,"" (IJ])}]
x y‘Nexp{ﬁ_‘\(—vzz-/z‘gz)}xo'”exp[jg{ —(¢;— x,-T_B_)z/ZOZ}] (39)

x (y7%) n“’2"1exp{—§,,/21(2}><(0'2) W2 layp{—%,/20%}.

The gain by the transformation is that the conditional posterior density of B is multivariate
normal; see Gelfand, Sahu and Carlin (1995) for more details. We obtained samples from the
joint posterior density in (39) by using the Metropolis-Hastings sampler.

3.3 Negative Marginal Quasi Log-likelihood

For Model 1,

2 2
e TN

where
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P(d|B,v,0%)= ﬁl ’]jl[n‘f-jiexp{ (xIB+v)d ;—n zexp( x,-T_E-i—v,.)}/dﬁ!] (3.10)
x(%,/2) "0 ~2) “*lexp{—1,/20 3}/T(n /2)

and P(B,v,04d) in (37) is the joint posterior density function. Here we let
Q,(d)=—1log(M,(d)), and we evaluate (3.10) and (3.11) and the posterior density at the

posterior means of 2| d where Q@=(8, _v,0?).
Now

P(8,v,08d)=P(x|B,0% d)P(B,0% d). (3.12)

Observe that
l { ] exp{( xIB+v)d ;—n exp(x] B+ Vi)}}exp{—v%/20 2}
]:I{]:[exp{ (xfB+v)d ;—n sexp( x,-T_§+V;)}}exp{ —v%/20 *}dv

PLLB, o, d)=
J ol

where v=(v,,,vy)TeR",

We show how to evaluate the normalization constant
I= f}a"[ H{UGXD{ (xB+v)d;—n exp(x7 B+ vi)}}exp{ —v%/20 2}]d_\L

in Appendix B.
We use density estimation with a multivariate normal kernel to evaluate P(B,0% d); see

Appendix A. To obtain a more symmetric density, we transform B,0? to_B,t where T=logoZ,
With this transformation

P(B,0Y d)=P(B,1l d) {1=103(02)}/0 ‘.

Thus, we apply multivariate density estimation to get P(B,tl d) evaluated at the posterior

mean of T.
For Model 2,
__P(dB,. v, 83x%0)P(B, v, 8v%0?
M d) P(B,v,8,3%0%d
where

P(d\8B, v, 8,3% %= ﬁ ]Ij[l[nf,-“exp{( xTB+v,;+8)d ;—n jexp( xT B+v,;+ S,)}/d Al (313)
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P(B,v,8,%%,02%) =[ ﬁ(ZﬂYz) “lexp{—vi/2y 2}][ ﬁl(Znoz) ~WV2exp{—6%/20 2}], (3.14)
x(%,/2) "(y0) ~"*lexp{—1,(1/¥ 2+1/0 ¥)/2}/ T(n,/2)?

and P(B, v, §,¥%,0% d) in (38) is the joint posterior density function. Here we let
Q,(d)=—log(M,( d)), and we evaluate (3.13) and (3.14) and the posterior density at the

posterior means of Q| d where Q=(8B,_v, §,v%,02).
Consider the transformation

b ;= x,T_§+5,~, j=1,, ¢

with identity on the other parameters. We have

P(B,v,8,¥%0*|d)=P(8, v, 0¥ 0% d) {, _ ,r5.5,=1...

and we need to evaluate P(B, v, ®,v2,0°% d). Now,

P(B,v, ¢,¥%,0Y d)=P(Blv, &,v%, 02, )Pyl d,¥v% 0%, dP(d,¥%,0% d) (3.15)

where
Blv, o,v%,0%, d ~ N{(Z]‘,xjx}) _I;Q),-x,-,oz(zljx,-x,-’) ‘1}
and
H{HCXD{(Vi+¢j)dij“n,',:CXD(V,""‘(I),')}}CXD{‘“V%/ZY 2}
P(v|®,¥%,0%, d)= — 2 1o 2 :
fRNI',I{I;Iexp{(V,-HD,-)dﬁ—ni,-exp(vt-+¢,~)}}exp{—vf/2y }dv
We evaluate

fm[ I:I{l:Iexp{ (V;+0)d ;— n gexp(v,+¢ )} exp{—v%/2¥ 2}]d—v

in a manner similar to (3.12) for Model 1; see Appendix B where we simply set ¢= x,-TE.
We summarize this method in Appendix C.
For P(&,¥%,02|d) we use the multivariate density estimation. We transform o= _¢,

1,=logv? T,=logo? to get
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2 2 — 2~2
P(d,%%, 09 d)=P(9, T, Tz’ d {Tx= log@?), 1, = log(uz)}/‘! Y

where again the transformation is used for symmetrization.

4. Some Numerical Examples

In Section 4.1, we review two alternative measures which we compare with the NMQL. We
employ these three measures to discriminate between the two models described in Section 3.
We use an example on colon cancer in Section 4.2 and a small scale simulation study in
Section 4.3, to compare the three measures and the two models.

4.1 Two Alternative Measures

The first alternative method of evaluating the models is to use a cross-validation. Let
d (; denote the set of all data d’s except for (7). Then letting » ;j=d ;/n ; we define the

cross-validation residual as ay;=7;—E(rj] d(;), and the standardized cross-validation

residual as
DRES ;=a ;/ SD(r ;\d ;). (4.1)

That is, the (#)-th observed #; is "held out” and compared with its point estimator,

E(r, d (), which is evaluated without using the observed d; We use (4.1), in summary

form, to rank the two models, and we employ the cross-validation residuals as a measure of
concordance of the data with a proposed model. For simplicity we count the number of health
service areas with | DRES ;=3 for all i and j, and we call this quantity NHD3.

The second alternative method of evaluating the models is to use the posterior expected
predictive deviance (EPD),
E{P(d%, d™) d°%} (42)

where d "™ is a random vector with distribution

R d™| d®= (g d™ I 0)hA d%)dr 4.3)

with #(Al d) the posterior density of A and g( d"|A) the probability mass function of
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d™ in (36). In (42), P(d*®, d"™) is a measure of the discrepancy between d°*, the
observed vector of the d; and d™, a set of "new” observations. We select d " from the
posterior predictive distribution of d ™ in (4.3). If the model and data are concordant, d°*

and d™ should be similar and (4.2) should be small. We use the Poisson-based measure

P(.,.),

P(d, d™)= Zﬁlf{(d".ﬂ 0.5)log {(d%¢+0.5)/(d"*+0.5)} ~ (d°%F — d")}.

s
See for example Waller, Carlin, Xia and Gelfand(1997) and Gelfand and Ghosh(1998).
4.2 Example on Colon Cancer

Colon cancer is one of the diseases of the middle age and the elderly. We use mortality
data for white males with colon cancer collected 1988-1992 for 6 regions of the U.S. In
column 2 of <Table I> we present the number of health service areas in each of the 6
regions. We apply Models 1 and 2 to these data. There are 7 age classes in the data. The

covariate x in the models is used to describe the age effect.

We fitted both models using the Metropolis-Hastings algorithm. In each case we "burn in”
1000 iterates and picked every 20th thereafter to get 1000 iterates which we use for model
assessment and inference.

In <Table I >, we compare the two models using the three measures. NHD3 indicates that
Model 2 fits better than Model 1 for all regions except region 7 (NHD3=2 for Model 1 versus
NHD3=5 for Model 2). The EPD shows that Model 2 performs better than Model 1 in all
regions. According to NMQL Model 2 is better in all regions.

<Table I> NHD3, expected predictive deviance, and negative marginal quasi loglikelihood
(NMQL) for Models 1 and 2 by region.

NMQL NHD3 Poisson-based EPD
Region #of HSA's Model 1 Model 2 Model 1  Model 2 Model 1 Model 2

1 23 995 821 7 2 567 310
2 121 4456 4054 32 1 2415 1632
3 45 1711 1468 5 4 638 517
4 105 3672 3135 13 6 1519 1222
5 38 1567 1197 2 5 513 424
6 48 1642 1183 20 3 1149 661
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4.3 A Small-scale Simulation Study

Our example on colon cancer in Section 4.2 indicates that the three measures we used to
rank Models 1 and 2 are consistent. We investigate this consistency further using a
small-scale simulation study.

We generated a data set similar to the observed data on colon cancer. Using Model 2, we
estimated B, ¥, and ¢* by an output analysis from the Metropolis-Hastings sampler on the
observed data. We kept 8 fixed at its posterior mean, and obtained the median values of ¥,

and ¢, denoted by 7% and o2, respectively. We used a 3° design with ¥ at three levels
(-%— Y2, %%, 2?) and o* at three levels (—% 52,08, 2?), and we generated the data for each

region by taking
v {¥ 2~4id M0, 2, 6 jlo >~did N(0,6?) and d jJA ;~ind Poisson(n A ;)

where log(A ;) = xJB+v,+86; as for colon cancer. That is, we generated nine dataset from

Model 2, and we fitted both Model 1 and Model 2 to each of the nine simulated data sets as
described for the data on colon cancer.

In <Table 0>, we present the three measures for the low value of +. For the low value of
o®, the three measures are consistent for region 4 where Model 2 is worse than Model 1 by
far especially for NMQL. The three measures show consistently that Model 2 is better than
Model 1 for all other regions. For the median and high values of ¢%, the degree of consistency
among the three measures remains the same except for a reversal in the NMQL for regions 4
in favor of Model 2.

In <Table II>, the three measures for the median value of 7 are presented. Again, Model 2
is preferred by all three measures. For the low value of ¢, the three measures are consistent.
For the median and high values of ¢*, NMQL prefers model 2 at region 4 while NHD3 and
EPD fail to favor model 2.

In <Table IV>, we present the three measures for the high value of +*. For the low value
of o, the three measures are consistent. For the median values of o°, region 4 is inconsistent
but NMQL moves to the correct direction that prefers model 2. Model 2 is favored
consistently for the high value of o°.

In general, the three measures show a high degree of consistency. As o increases, we
expect that Model 2 will show better performance because Model 1 does not have the random
effects 4, For NMQL, we observed this clearly. For region 4, as the value of ¢ increases
from low to medium (or high), NMQL selects model 2. However, both NHD3 and EPD fail to
choose model 2 over model 1. We observe that NMQL is a sensible quantity to use for
ranking models.
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<Table II> Negative marginal quasi log-likelihood (NMQL), NHD3, and expected predictive

deviance for Models 1 and 2 using simulated data by three levels of 62 when ¥? is low.

¥ =Low NMQL NHD3 Poisson-based EPD
52 Region Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Low 1 2569 2388 10 1 654 342
2 9861 9482 58 1 4367 1728

3 2994 2683 5 2 745 606

4 7646 38141 3 9 1400 1518

5 17748 4908 4 0 622 459

6 3359 1036 22 0 1652 649

Median 1 4037 3856 15 1 872 342
2 15977 14605 92 5 6970 1751

3 4403 3880 10 2 847 584

4 10012 8571 4 6 1460 1516

5 28794 9229 13 2 8683 507

6 4903 1047 31 1 2590 679

High 1 739 6977 16 2 1552 326
2 29252 25510 108 8 12583 1723

3 8675 7489 15 4 971 577

4 16486 14386 6 6 1464 1482

5 58923 21336 24 1 1383 447

6 9322 1216 37 2 4742 704

5. Conclusion

We have discussed the Poisson regression models for small area estimation. Then we have
shown how to compute the negative marginal quasi log-likelihood when there are improper
priors but proper posterior densities. Our method uses importance sampling and a multivariate
density estimation from an output analysis of the Metropolis-Hastings sampler.

Using an example on colon cancer and a small-scale simulation study, we have shown that
the NMQL agrees reasonably well with two other measures proposed in the literature. This
adds credence to the NMQL even though it is not really a marginal likelihood since the prior
distributions are improper. However, our methodology applies equally well to the marginal
likelihood that is obtained from a proper prior.
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<Table III> Negative marginal quasi log-likelihood (NMQL), NHD3, and expected predictive

deviance for Models 1 and 2 using simulated data by three levels of 6% when Y2 is the

median.
+* =Median NMQL NHD3 Poisson-based EPD
52 Region Model 1 Model 2 Model 1 Model 2 Model 1  Model 2

Low 1 2017 2536 9 0 682 335
2 10538 10148 64 4 4553 1717

3 2828 2447 7 3 762 605

4 7762 10561 6 7 1380 1411

5 17793 16885 4 2 616 497

6 3708 1116 22 0 1684 684

Median 1 4408 4176 14 0 879 322
2 16950 15275 90 3 7041 1765

3 4466 3953 11 6 805 576

4 11162 9228 6 8 1456 1503

5 27103 8495 10 4 833 488

6 5225 1126 31 2 2598 666

‘High 1 7849 7410 18 1 1697 328
2 29408 25535 110 5 12485 1742

3 8642 7707 15 4 987 526

4 18340 15522 5 7 1465 1491

5 98014 45600 30 3 1953 498

6 9543 1330 37 1 4708 618

Appendix A. Multivariate Density Estimation
Let X1,Xg,...,X, be a random sample from an unknown K-variate distribution. Let
X = in/n and §°= E(Xi";)(xi‘;)T/(n—l)-
i=1 =1

Then an estimator for the probability density function is f (x) where

£l = 1 c —x )78 (x —x: ) /b2
f(X)— n}_llépt[det(s)]l/zi:El K(X Xl) S ( 1)/hopta (Al)

for any x € R¥. In (A1), K(t) = (2n)"%exp {~¢/2},0 <t < o, is the kernel and
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<Table IV> Negative marginal quasi log-likelihood (NMQL), NHD3, and expected predictive

deviance for Models 1 and 2 using simulated data by three levels of 82 when Y2 is high.

¥ =High NMQL NHD3 Poisson-based EPD
(52 Region Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Low 1 3438 2915 8 0 649 329
2 11284 10486 56 2 4356 1698

3 2963 2568 12 1 777 598

4 9492 45487 2 3 1405 1582

5 19174 4910 6 3 639 515

6 4498 1251 20 0 1655 678

Median 1 5047 4392 14 0 1037 345
2 17572 15685 88 2 6884 1678

3 4319 4009 10 2 796 587

4 11950 10278 3 6 1398 1430

5 28219 8737 7 1 745 464

6 5477 1287 31 1 2481 687

High 1 8637 7753 18 3 1556 342
2 30164 27202 110 3 12485 1704

3 8424 7319 14 6 386 577

4 19128 16969 9 5 1460 1459

5 68086 24568 25 6 1627 546

6 10695 1813 39 2 4939 710

hope = {4/ (+2) /0 = /0

is the optimal window width for the multivariate normal population (Silverman 1986).

In practice, (A.1) works best if the components of x are symmetric or (more optimistically)
approximately normally distributed (Silverman 1986}. Thus we apply (A.l) after a degree of
symmetrization.

Appendix B. Evaluation of the Normalization Constant in Model 1

We need
1=/ (II}_ exp {A(v; ) Jdv,
RN

where



394 Hyunjoong Kim et al.

Aw)=4(1)+ 4 (w)
with

Aw) =3 {@]B8+u)dy—nye x"8+u)} and A(u)=—11/20" (B.1)

7

We use importance sampling in which

1= [

where p, (v ld) is an N-variate Student’s t distribution on n degrees of freedom with location

and scale parameters to be determined.
Observe that we can perform N univariate integrations using Student’s t densities but it is

more efficient to use just a single integration in RY This is true because vy, ..., Vy given

B,0%d are independent.
We obtain p, (v|d) in the following manner. We note first that

8?4,

84,
v, ZJ: {d,-j—nijexp (XjT,Q'*'Vi)} and o7 =— ,E ngexp(x; 8+ u).

X4

1 1

8A ~
Then settin = 0, we have v; =log

' Enij exp (z JT,Q )

. and approximately

vlB,o* d ~ N, (3] dy)™ ) (B.2)
7
Now combining (B.1) and (B.2) we have approximately

(Z dij)’;;* 1
T

Vilgroz;d ~ s .
1/0° + Y 4y 1/0* + 3 d;
2 J

We obtain p, (v|B,0%d) by using the latent variable p° with
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3 dw’ :
vy, .U’ B,0%,d ~ ind L s L (B.3)
108+ 3 dy; 107+ Y, d
J J
and
7;72_ ~ X2, (B4)

where 7 is to be specified.
Note that in the wunivariate case we must draw N values of ,02 in (B4);, also

Viyeery VN|p2’,Q,02,d are now correlated. We draw MN-variate vectors v in (B.3) and (B4),

(k)

denoted by ¥, j=1,..,M. Then we estimate / by

(h)
M—- z lexp (Ui )}

We found that M = 1000 with 7 = 10 is conservative in (B.5).
For Model 2, we repeat (B.1)-(BS5) with ¢; =z (3.

Appendix C. Evaluation of the Normalization Constant in Model 2
As in Section 3.3, we start with
PB,v,8,7,71d) =P (v,4|8,7*0* d )P (8,7% ¢%d)

where P(8,7,0%d) is described in Section 3.3 and P(v,8|8,7%0%,d) is obtained by computing
its normalization constant

I,=E exp{ﬁ‘ S xTB+v 45 )—nsexp(x TB+v 48 ) (€1
— vyt $ sy d[s (88 vt 0% o)

where the expectation is taken over f,(v,8|8,~,0*d).
Let v and § be estimates from an output analysis of the Metropolis-Hastings sampler, and

let v,*= log(lg:la’,;,/]z:'l nexp{ T8+ '8\,}) and F;°= log( ;Nldu/ Z]vl n,exp{ xTB+ ’\7,}) where
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i=1,.,N¥ and j=1,..,c. Then, f,(v,8l3,v¢*d) in (C.l) is obtained by the following

construction,
fa(z,'élg; 72}02Jd) =f8(y|§’§772’ 02)d )f&@lé,g,’y27 02,d )

and after introducing the latent variable 7

u'y, 4
uld 8,7, d, 7 ~ ind N | C2)
LA+ Y dy IATY) dy
2 J
&Y dy
S, B,+, o*d, 7 ~ind i i , z (C3)
/43, dy 1/6°+ ) dy
and
/7~ X (C4)

where =10, i=1,..,N, and j=1,..,¢. The construction in (C.2)-(C.4) produces a cN-variate
Student’s t density for f,(v,5|8,7,¢%,d).
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