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Abstract

A common method of handling nonresponse in sample survey is to delete the cases,
which may result in a substantial loss of cases. Thus in certain situation, it is of
interest to create a complete set of sample values. In this case, a popular approach is
to impute the missing values in the sample by the mean or the median of responders.
The difficulty with this method which just replaces each missing value with a single
imputed value is that inferences based on the completed dataset underestimate the
precision of the inferential procedure. Various suggestions have been made to
overcome the difficulty but they might not be appropriate for public-use files where
the user has only limited information for about the reasons for nonresponse. In this
note, a multiple imputation method is considered to create complete dataset which
might be wused for all possible inferential procedures without misleading or
underestimating the precision.

Keywords : multiple imputation, ignorable nonresponse, Polya posterior
1. Introduction

Most sample surveys contain nonresponse, which become a problem when it comes time to
analyze dataset if the user has only complete-data methods and has limited information about
the reasons for nonresponse. Various suggestions have been made to handle the problem of
nonresponse with or without much theoretical justification.

Recently imputation is becoming a standard approach for handling missing data problem.
Note that Rubin (1987) argued that any sensible analysis must be based on an assumed model
for the nonresponse. Since, in Bayesian point of view, the missing data can be treated as
unknown quantities which are to be estimated together with parameters of interest on the
assumed model, handling nonresponse is theoretically straightforward from the Bayesian
viewpoint. A popular modeling of multivariate data relies on normality assumption and
imputations based on normal models are reasonable in a range of scenarios, including cases
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where data are not normally distributed. See Rubin and Schenker (1986), and Schafer (1997).
Thus theoretically the imputation for multivariate data is relatively easy to handie in some
sense even though it might face various difficulties in practice.

On the other hand, in case of item nonresponse without auxiliary variables, only limited
information can be incorporated to imputation, and because of the limitation, both Bayesian
and frequentist methods of imputation often yield a single imputed value for nonresponse.
However, it is well-known that inferences based on completed dataset with just a single
imputed value underestimate the precision of the inferential procedure. See for example, Cohen
(1996), Rao (1996), Ghosh and Meeden (1997), and Meeden (2000). To solve the problem, Rao
and Shao (1992) considered a procedure that constructs a completed sample with a single
imputed value but then used a jackknife-type estimate of variance to get a correct estimate of
variance. See also Nusser, Carriquiry, Dodd, and Fuller (1996). They used unequal weights to
solve the problem. However, those methods would not be appropriate in public-use files.

Another approach is multiple imputation. Note that an interesting approach for multiple
imputation can be found in Meeden (2000). He provided a decision theoretic approach for
multiple imputation which mainly focuses on the inference of the population mean. His
imputation method have appealing features in that it yields an admissible solution and
frequentist properties of a confidence interval for the mean based on the imputed values will
be correct. Nonetheless one may criticize the discrepancy between the usual imputation
methods. According to his method, each nonresponse is imputed by the mean of responders
but the responders are adjusted so that the complete dataset would have desired properties. It
is intuitively clear that one might want to keep the responders as they are and impute for the
nonresponders in such a way that the distribution of complete dataset is as similar as that of
responders.

In this note, we provide a multiple imputation method for the simplest situation where the
characteristic of interest is univariate with and without an auxiliary variable. The created
completed dataset would have desirable frequentist properties for the inferences of mean and
median.

2. Theoretical Consideration for Multiple Imputation

Let y; be the unknown value of some characteristic of interest. Suppose that a finite
population U consists of /V units and each element ¥; in U is a real number. In the decision
theoretic formulation, ¥ = (¥1,%2,",¥n~) is the unknown state of nature or parameter which
belongs to N-dimensional Euclidean space. A subset s of {1,2,---,N} is called a sample. Let
S, denote the subset of s that contains the labels of the units in the sample for which ¥ was
observed. Let n and 7. be the numbers of elements in s and $,, respectively. For notational

convenience, we assume that the first n units of the population are sampled and the
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responders are just the first 7, units of the sample. Thus Yn, +1,"""»Y» are missing.

Let y (s,) and Var(y(s.)) denote the sample mean and the sample variance of the

responders. In many cases the main interest may be the inference about the population mean.
Since, assuming that the design is simple random sampling without replacement, the best

frequentist estimates for the mean and variance of the population in this scenario are 37 (s,)

and Var(y(s.)), respectively, one would estimate the population mean by 37 (s,) and would
construct the confidence interval for the population mean under the normality assumption.

Suppose that a created complete sample @ = (ay,a9,°*,a,) is obtained by imputation. Let a
and Var(a) be the sample mean and the sample variance of a. From the frequentist
viewpoint, it is reasonable that the created sample have the properties

a =1y (s) @0
and
Var(a) = %—_—% Var (y (s,)) 2.2

so that both inferences about the population mean based on the created complete sample and
just on the responders would yield the same result.

In the decision theoretic formulation, @ is an action. Given an appropriate loss function and
the prior distribution of y, the best action in terms of the loss and the prior distribution can
be obtained by finding the Bayes solution. If we assume the squared error loss with the two
restrictions (2.1) and (2.2), the loss function can be defined as

'231 (yi - a‘z’)2
L(a,y,s,s.) = =
e = y_- nN=n) (2.3)
v 60) = 3, 20 Var 3 6,))

where I is the usual indicator function. Also Meeden and Vardeman (1991) provided a
noninformative prior for this problem. Because of the limited information for this decision
problem, seen and unseen are roughly exchangeable and we perfectly agree that Polya
posterior is a reasonable posterior distribution of unseen based on seen. See for further details

Meeden and Bryan (1996), and Ghosh and Meeden (1997).
Based on this belief and the loss function, the Bayes solution obtained by Meeden (2000) is

given by

- - —n 1/2 —
Y (8,.) +(((;i__]i))z’('?5v_;))) (yi_y (sr)); for i=1,2,-,n,

5(87‘)1 fO'l" 7,=n,+ 1,‘",11

P (2.4)
The solution has a stepwise Bayes justification, and hence is admissible by the result of Lee

and Meeden (1994).
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However, the Bayes solution adjusts each responder in the sample. One might wish to keep
the responders fixed and just adjust the imputed values for the nonresponders in such a way
that one gets the correct mean and variance. That is, one might wish to impose the third
constraint

a(s,)=y(s;) (25)

where @ (s,) = (al;"':an,) and ¥ (s,) = (%;"';yn,). Then the loss function is given by

2‘1 (yi_a'i)2

L(a,y,s,8.) = — — £
fy60=a 2 vy e ) =u6] 9

Note that, under the Polya posterior, the expected value of unseen given seen is the sample
mean of the responders. Thus minimizing the expected loss is equivalent to minimizing
L - 2
i=;+1 (v(sr)~a) (2.7)
subject to the constraints of (2.1), (2.2) and (25). Since the value of (2.7) is determined by
(2.2), any solution satisfying (2.1), (2.2) and (2.5) is a Bayes with respect to the loss function
(2.6).

One solution can be found in Cohen (1996). Although he did not consider the Bayesian
approach, his solution with some obvious modifications indeed satisfies the constraints and
hence is a Bayes for the problem. Even though Cohen provided a Bayes solution, he imputed
the nonresponders by two different values. . This might distort the actual distribution of
sample. Also it is hard to recognize it as a multiple imputation method.

One might prefer to have the unique or the best solution here. However, it is not surprising
that the Bayes solution is not unique because of the limited information. Many authors have
suffered such difficulty. There might be two possible choices which can solve the problem.
The first one is not to restrict the action space. Find the unique Bayes decision among all
possible actions with minimal constraints of (2.1) and (2.2) as Meeden did. This strategy is
successful but many statisticians would not agree. The second way is to impose more
restrictions on the action space. To adopt the second strategy, more information on the
decision problem may be required and hence may not be possible to obtain the unique or the
best. However, we consider the restriction on the median of created dataset.

It is intuitively clear that the distribution of created sample should be as similar as that of
responders so that the created sample does well for all possible inferential problem. For this
purpose, we may create sample of size n whose mean as well as median agree with those of
the responders. This may preserve the direction of skewness and we may hope that the
created sample is good for other inferential problems. To incorporate this idea, we should set
up the fourth constraint, namely ‘

y(s)=a (2.8)
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where 17 (s,) and @ represent the median of ¥ (s;) and a, respectively. Then the loss is

defined to be

( | 3 ()
L(a,y,s,s,) = —— — — =1 —
l(y (s,) = a,%r(—gv—_q;-g— Var(y(s,)),a(s,) =y (s, ),a =y (Sr)) (2.9)

Now the Bayes solution with respective to (2.9) should satisfy (2.1), (2.2), (25) and (2.8).
Because the Bayes solution is not unique, various suggestions are possible. In subsequent
sections we will provide a Bayes solution. Also we will demonstrate by simulation studies
that the created sample works acceptably for the inference about the population median.

3. A Naive Multiple Imputation in Finite Population Sampling

In this section, we will find @ (sf) = (an,+1)'") a,) satisfying the four constraints. Because
we are considering multiple imputation and the characteristic of interest ¥; is assumed to be
a real number, it might be preferable that a; # a; for ¢ = j=n,+1,---,n. We will informally

impose this restriction too.
Let m =n —n,. The first constraint together with (2.5) implies that

1 ¢ =
Tn-,-=;+1 a; =y (s,) (3.1)

Since the second constraint is given by

! (z: (-7 )P+ Y <a,-—§<s,>>2J= 2o $ -y (),

n—1 iz N-n n, n,

it can be written as:

n

by (a,-—§(s,~))2=(N_n’—7l n—l —112 (3 —y (s.))? (32)

=5 N—n n, n.—1

Note that the right-hand side of (3.2) is fixed. We will denote the fixed value by 2.

In what follows, we assume that 17 (s,) is uniquely defined. We are trying to create a (s¢)
satisfying (3.1) and (3.2), and the median of @, a is equal to ¥ (s,). To this end, two

different situations shall be considered. At first we will consider the case that the number of
missing observations is even. Then we may write m = 2t for some integer t. For this case,

the following action is considered:

2y (s,) = (s,) £ 251N, if i is odd

y(s,)F ;—')\, if ¢ is even

(33)

Ap, +i =



404 Seung-Chun Lee

where D=1y (s,) —¥ (s,) and

—t(t+1)D+ \/tz(t+ 1) - it 1)?fzt+g (mD?— %))
t(t+1)(2t+1)/3

The signs in (3.3) are determined by the inequality relationship between y (s,) and ¥ (s,). If

A=

7 (s,) <y (s,), the odd cases take plus sign but the even cases take minus sign and vice

versa.
Note that

_(N=n n n—1 e =2
21—(N_n P —1);]1 (% —y ()
Y, (
=1

(n—n.)(n+n,—~1)

S ey w—y (o)1= IR § (-5 s,y
2m(n,+t—1/2) n,

” n, (TL,. -1 ) -2_17 (34)

> mIP

and A is well-defined with property A > 0. Also it is easy to check that a;’s satisfy the
constraint of (3.1) and

Xn] (a;—y (s,))*=2tDP+ 2t(t+ 1) DA+

i=n,+1

t(t+1)(2t+1) 2
3 .

Since A is a solution to the equation

F(A) =2t 4 ap(e+1)pa+ HEELEED) o5 g

the constraint of (3.2) is also satisfied by a;’'s given in (3.3). Since A > 0, @;'s have the
property that they are spreaded out from ¥ (s,) and 2y (s,) —y (s,) to either direction of tail
sides. For example, if 4 (s,) <y (s,), all of the @n+i’s with odd i are located on the
left-hand side of § (s,) while with even i are on the right-hand side. Hence, the created

sample has the unique median ¥ (s,). Thus we have the following result.
Lemma 1. a (s¢) given in (3.3) is well defined, and is a Bayes with respect to loss (2.9).

Suppose that the distribution of the responders is near symmetric. Then we might expect

y(s,) = 37 (s,) and the imputation is done to preserve the symmetry. Suppose now the

distribution is skewed to right so that 7 (s,) < ¥ (s,). The imputation for the left-hand side
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of y (s,) starts from ¥ (s,) but starts from 2y (s,) — ¢ (s,) for right-hand side. Because the

median is a robust alternative to the mean as a center of distribution, we might consider the
median as the center for the skewed distribution. The imputation for right-side starts far from
the center of distribution, and we might hope that the created sample preserve the skewness
too.
Next, consider the case that m = 2¢+ 1 with ¢=1. Define

g (s'r )’ if ?‘ = 17

= 2t+ 1 1—1 e .
_Jly(s)+ 57 D+ A, if 4is odd, i=1 (35)

2
- 2t—1 7 ee oo
y (s,.) 57 D¥F 2)\, if 4 is even

an,+i

where

—t(t+1)D+ \/tz(t+1)2D?— t(t+1)3f2t+ﬁt(m+ %)ﬁ—zlj

t(t+1)2t+1)/3
(3.5) is well defined as before with properties (3.1) and (3.2), but theoretically we could not
guarantee A > 0. Note, however, mI* given in (34) is a loose lower limit of 2. In practice

A=

we almost always have A >0 and a =y (s,).

We have provided a multiple imputation for a simple situation in the hope that the created
sample is useful for various inferential problems such as the location estimation. We believe
that it is useful for other inferential problem as well, because the created sample might
preserve the skewness so that the distribution of created sample is not much different from
that of responders.

4. Imputation with an Auxiliary Variable

Suppose that an auxiliary variable ¥;, which is closely related to ¥;, is observed for every

unit in the sample so that one can employ the ratio type estimation for the population
quantities, and we are interested in estimating the population mean. The ratio estimator of the

population mean of y is Rs,; , where R, = y (s,)/r (s,), z (s,) is the mean of auxiliary
variable of the responders and z is the population mean of auxiliary variable z. It is

well-known, that the variance of ratio estimator is estimated by

N _ 1 —f r o 2

Var (R,z ) = mz; (y; — Ro ;)
where fr =n,/N. See Cochran (1977). The ratio estimate of the mean based on the complete
data a is just B,z where R,=a /z (s) and z (s) is the mean of the auxiliary variable of

the sample. As before, the frequentist confidence interval based on the responders and the
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created complete dataset will agree if and only if
R, =R, (4.1)

and
Var (Rz ) = Var (Rs; ). (4.2)
where

Var(Ra;) = LL—% (a; — R,z;)*

n(n—1) &~
and f=n/N. The constraint of (25) is also desirable, because we do not want to adjust the
responders. It is easy to check that two constraints (4.1) and (4.2) together with (2.5) can be
written as!

a (s2) = R,z (s%) 43)

and

2

n
i=n +1

l_f'r [ n_l s
(ai—Rs,xi)2=(1_f o, —1 —1121 (% — Bozs)”, (4.4)

Thus if we assume the squared error loss, we need to minimize the expected value of

n

E (3 — a;)* subject to (4.3) and (4.4).

i=n+1

The Bayes solution can be obtained by defining an appropriate prior and the conditional
expectation of unseen given seen. Various noninformative priors are possible. For example,
Meeden (2000) argued that the ratios 7i = ¥i/Z; are roughly exchangeable provided that both

Yi's and Z;'s are all greater than zero and Z;’s do not differ too much in size. Then the
Polya posterior can be applied to the ratios T; = Y:/Z;. The conditional expectation of

Yi/Zi,t € 8¢ given Y(s,) and =z (s) is just the sample mean of observed ratios

N,

-1
Ts, = Tr 2 (y:/5 “"i). This assertion was supported by Basu (1971) and Royall (1970). If we

i=1

believe the ratios are roughly exchangeable, then the decision problem can be summarized to

n

- 2
minimize >, (rozi—a;) subject to (4.3) and (4.4). The solution of this problem was

i=n,+1

given by Meeden. Although he did not consider the constraint of (2.5), he provided the
solution to this problem.
Another possibility, which we might prefer, is that (yi—rz;)'s are exchangeable. Formally

we might assume that the population values (y;,z;) are random samples from a super

population in which
Y =TT+ € (45)

where €;’s are independent of Z;’s with £ (¢;) =0, Note that the method of moments
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produces the ratio estimator on the model and under certain conditions it can be the best
linear unbiased estimator. Also it is intuitively clear that €; ‘s might be roughly exchangeable

without further assumptions. Thus the Polya posterior can be applied to €;'s. That is, for

each ¢ € s, we have

Eely(s,.),z(s),r)=€ (s,) =y (5,) =7z (s,)
or equivalently

E(uly(s,),z(s),r)=y (s,) —r(z (s) —z:). (46)

In Bayesian paradigm, it needs to define the prior distribution of 7. Alternatively the
empirical Bayesian method can be applied to here. Since €;’s are assumed to be exchangeable,
the least square estimator
RLS = Z L:Yis E : x
=1 i=1

is the best linear unbiased estimator. Thus we will replace r in (46) by Rrs. Then the
decision problem is now to minimize

Y, (mi—a)? 47

i=n +1

subject to (4.3) and (4.4) where y; = 5 (s;)— Rys (-’B (s;)—z;).

Theorem 1. Let X be the value of the right-hand side of equation (4.4). Suppose firs = I,
and the number of missing observations is greater than or equal to 2. Then for the problem
of minimizing (4.7) with respect to a;’s subject to the constraints of (4.3) and (4.4), the
solution is given by

a; = R, z; + 0 (z; —z (s°)), i=n,+1,-,n

where § is defined to be

n

n if ), — i)z —z (s2)) <0
5= i= 1:{+1 B
if ) (R v )z —z (s£)) >0
n _ 1/2'
with n= [22/_2 1 (z,—= (sﬁ))z) )

Proof: It can be shown by a standard method using Lagrange multipliers. Let

n

L= ) Z (a; "?/z) —2)\[ z"} a; — R, 2"3 xi]‘&(ﬁiﬂ (ai—ﬂi)z“zzj

i=n,+1 =n,+1 i=n,+1

where #; = R, T; Taking the partial derivative of L with respect to @; and setting it equal to zero,
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we have

1 *
a"i=—1—___)\2(yi+A1—>\2p'i), i:nr—}—l,""n (48)

and hence

a(s)  y N
1—X, 1-X

Yi. This shows A, = @ (s¢) —y*. Substituting A1 in (48) by a (s¢) — y*

£

o

(4]
<1

3|~
NgE

and subtract #; from both sides of equation (4.8), we get, for ¢ =n,+1,---,n,
1 * - -
@ — M= 70 Ny ((’Ui —y*)— (Mi “‘MD

"—1 - (4
=1= X (RLS—RS,)(GJ,- —x (8¢ ))r (49)
and

n

Y (a—w)= (1 _}AJZ(RIS—RS,VZ (xi—.:v_(sﬁ))Q_

t=n+1

Because of the constraint (4.4), it must be
1 Xy /2

1-2Xy B - 2
(Rus— B2 (wi—7 (s2))

Substituting above quantity into (4.9), we have the desired result.

Theorem 1 provides the method for creating complete dataset which have the correct
frequentist properties under repeated sampling. It has the decision theoretic justification so that
both Bayesian and frequentist would agree. The similar result can be found in Meeden (2000)

under rough exchangeability assumption for the ratios Yi/"- z;, which might be questionable in

many situations. In fact, the assumption implies that the variance of ¥: is proportional to z?.

More widely used model might be that the variance of ¥; does not depend on Z; such as the

usual normal model.
The created sample is selected with the goal of making inference about the population
mean. Is it doing well for other inferential problems? In section 5, we will give an answer for

the question.
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5. Simulation Study and Conclusion

For the case of no auxiliary variable, we considered two artificial populations of size 500,
sampled from a normal distribution with mean zero and variance 5, and a Gamma distribution
with shape parameter 5 and scale parameter 1. After taking simple random sample of size 50
from each population, which are denoted by "All” in Table 1, some of sample values were
removed randomly from "All,” denotes it by "Res.” The values of 7, considered here were 30,

40 and 45. "Nav” in the table represents the created complete sample by (3.3) or (3.5). A
complete dataset, created by (2.4) was also obtained for comparison and denoted by "Bay.”
From each of the four dataset, the lower and the upper quartiles, and the median are
calculated as estimates of the corresponding population quantities. After 1000 replications of
this process, we obtained the mean absolute errors of the estimates. We also computed the
MacKinnon 95% confidence interval for the population median and the average length of the
intervals with coverage rate. Some simulation results are given in Table 1.

It can be observed that "Nav” would tend to give slightly smaller values of the lower quartile
than those of "All” and "Rev” but give little bit larger values of the upper quartile for both
symmetric and skewed populations. This kind of phenomenon is expected because the imputed
values should be more dispersed than the responders because of the constraint (2.2). But the
average length of confidence intervals for the median are comparable to those of "Res”, while
Table 1 : Averages of the median, the lower and the upper quartiles for estimating the population

quantities and their mean absolute errors, and the average length, divided by the standard deviation of
population, of 95% MacKinnon confidence of intervals along with their coverage probabilities.

Gamma(5,1) N(0,5)
No of
Resp Type Ave, quantile MAE Length Prob Ave, quantile MAE Length Prob
q25 q50 q75 q256 q50 975 q25 g50 q75 q26 q50 q75
All 3.57 4.62 6,07 0.26 0,22 0,31 0.56 0,97 -1,50-0.028 1.47 0,33 0.29 0.34 0.69 0.97
Res 3.60 4.65 6.07 0.34 0,31 0.42 0.83 0.97 -1.46 -0.0131.45 0.43 0,39 0.46 0.94 0,97
30 Nav 3.43 4,65 6.46 0.29 0.31 0.49 0.85 0,97 -1.65-0,0131.64 0.360.330.39 0.91 0.98
Bay 3.92 4.98 5,20 0.49 0.44 0.89 0.03 0.06 -0.69 -0.000 0.66 0,96 0,33 0.93 0.002 0,003
Pop 3.50 4.59 6.06 -1,61 0,038 1,53
All 3.454.70 6,39 0.26 0.26 0.43 0.64 0.95 -1.44 -0.07 1.55 0.310.320.3 070 0.97
Res 3.47 4,70 6,38 0,29 0,30 0.49 0.82 0,98 -1.44 -0,06 1,52 0.340.360.40 0.83 0.97
40 Nav 3.27 4.70 6,78 ©.28 0.30 0.54 0.80 0.98 -1.51 -0.06 1.61 0.310.360.35 079 0,97
Bay 3.44 5.08 6.04 0.30 0.41 0.63 0.33 0.76 -1.33 0.04 1.34 0.360,300.45 0.30 0.56
Pop 3.38 4.72 6.48 -1,46 -0.10 1.56
All 3.56 4,89 6,35 0,24 0,25 0,37 0.64 0,96 -1.43 -0.11 1,53 0.250.270.35 0.69 0.9
Res 3.57 4.89 6,35 0,27 0.28 0.40 0.73 0,97 -1.42-0.11 1,53 0,27 0.30 0,38 0.79 0.97
45 Nav 3.46 4,89 6,60 0,25 0,28 0.45 0.73 097 -1,56-0,11 1,70 0.280,300.36 0.79 0.97
Bay 3.56 5.11 6,22 0.31 0,34 0,41 0.48 0.85 -1.41 0.03 1.45 0.29 0.28 0.43 0.51 0.83
Pop 3.52 4.85 6.38 -1,46 -0.12 1.61
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Table 2 : Averages of the median, the lower and the upper quartiles for estimating the
population quantities and their mean absolute errors, and the average correlation coefficents

Popl. Pop2.
No of Ave, Ave.
Resp Type Ave, quantile MAE Corr, Ave, quantile MAE Corr.
25 g50 q75 q25 950 q75 corr q25 q50 q75 q25 50 q75 corr

All 25.03 29.14 34.18 0.77 0.86 1.20 0.95  23.48 28.64 35.66 1.14 1.13 1.66 0.71
30 Res 25.11 29.17 34.00 1,02 1.13 1.54 0.94  23.54 28.68 35.52 1.48 1.53 2.19 0.70
Rls 25.49 29.03 33.56 1.29 0.91 1.61 0.92  23.78 29.35 35.60 1.79 1.59 2.00 0.65
Rme 25.63 29.20 33,64 1.36 0.91 1.66 0.92  23.83 29.37 35,54 1.80 1.62 1.99 0.65
All 25.00 29.12 34,16 0.75 0.85 1.20 0.95  23.36 28.65 35.76 1.11 1.191.70 0.71
40 Res 25.0529.11 34.09 0.86 0.97 1.38 0.94  23.35 28.59 35.64 1,27 1.31 1.90 0.70
Rls 25.16 29.11 33.99 0.89 0.87 1.33 0.93 23,59 29.01 35.38 1.26 1.31 1.78 0.66
Rme 25.25 29.12 33.91 0.90 0.88 1.33 0.93  23.61 29.00 35.37 1.26 1.32 1.76 0.66
All 25,00 29.13 34.23 0.81 0.88 1.20 0.95  23.53 28.74 35.87 1.15 1.18 1.80 0.71
45 Res 25.03 29.16 34.20 0.86 0.95 1.28 0.95  23.55 28.73 35.86 1.19 1.25 1,90 0.71
Rls 25.12 29.16 34.22 0.81 0.91 1,22 0.94  23.59 28.94 35.83 1.151.23 1.74 0,67
Rme 25.11 29.15 34.14 0.81 0.91 1.24 0.94  23.60 28.94 35.83 1.14 1.24 1.74 0.67
Pop 24.85 29.06 34.53 0.95 23,19 28.67 36.05 0.71

“Bay” does not give proper results. Thus we might conclude that "Nav” does not distort the
distribution of responders too much.

Next, for the case of multiple imputation with an auxiliary variable x, we also considered
two artificial populations of size 500. Each observation of auxiliary variable was obtained by
setting to equal to 5 plus an observation from a gamma distribution with shape parameter 5
and scale parameter 1. Then two populations were created from normal distributions with
mean 3%; and variance 5 and 57, respectively. Note that €’s given in (45) are
exchangeable in the first population, while the ratio y/r are exchangeable in the second
population. As before, after taking random samples of size 50 from each population, some
values of sample were randomly removed. Then the removed values were imputed by theorem
1, denoted by “Rls” and the result of Meeden (2000), denoted by "Rme.” The sample quartiles
were calculated from each of four dataset. After 1000 replications, we obtained the average of
sample quartiles and their mean absolute error (MAE) with average sample correlation
" coefficient. The result is shown in Table 2.

In both populations the mean absolute errors of Rls and Rme are slight larger than those of
Res when the number of responders is 30, but both imputation give better results when 7, is
40 or 45. Thus it seems that both imputation methods would be appropriate when the number
of nonresponders is not large compared with the sample size. Also it can be observed that
Rls gives slightly better results than Rme in the first population but other simulation results
which are not appealed in here show that both methods are relatively competitive so that one
would have a difficulty to choose the right method. In short, both methods provide reasonable
imputation for most configurations.
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