DOI QR코드

DOI QR Code

Nd:YAG 레이저에 의한 다층 박막의 미소 점 마킹

Spot marking of the multilayer thin films by Nd:YAG laser

  • 김현진 (조선대학교 대학원 광응용공학과) ;
  • 신용진 (조선대학교 자연과학대학 물리학과)
  • Kim, Hyun-Jin (Department of Optical Engineering, Chosun University) ;
  • Shin, Yong-Jin (Department of Physics, Chosun University and Beckman Laser Institute University of California at Irvine)
  • 발행 : 2004.08.01

초록

콤팩트디스크(CD-R; Compact DiskRecordable)를 성분별로 분리하여 제작하고, 다층 박막 구조를 만들어서 레이저빔의 에너지를 변화시켜 가면서 조사하여 각 성분 층에서의 최적 미소 점 마킹 조건과 홈 형성 과정에 관하여 연구하였다. 본 연구는 Q-스위치 Nd:YAG 레이저를 이용하여 준비된 각 시료의 표면에 27∼373 mJ 빔을 80 $\mu\textrm{m}$의 점적 크기로 조사하여 샘플에 형성된 흠 형태를 광학현미경(OM; Optical Microscope)과 광 결맞음 단층촬영기(OCT; Optical Coherence Tomography)로 비교-관찰하여 미소 점 마킹의 형성 과정을 분석하였다. 다층 박막에서 용융된 기판 층은 짧은 시간동안 충분한 열 흐름이 발생하여 증배의 형성을 야기하며, 반사 층과 염료 층 사이에 흡수된 에너지는 염료를 용융시키고 체적을 증가시켰으며, 증배가 식으면서 표면장력의 영향 및 레이저빔에 의한 순간적인 시편의 온도상승으로 기화와 반동압력에 의한 질량흐름 때문에 두 층의 경계면에서 홈과 외륜의 발생을 설명할 수 있었다. 따라서 다층 박막에서의 미소 점 마킹의 형성 과정은 표면장력, 용융 점성력, 층 두께, 다층 박막 성분 물질의 물리화학적ㆍ광학적 성질과 관계가 있음을 알 수 있었다.

We separated the multilayer structure of CD-R(compact disk-recordable) and investigated optimal spot marking conditions and physical and chemical transitions in response to various laser beam energh levels. Spot marking(80 ${\mu}{\textrm}{m}$ spot size) was produced on the surface of each layer using a Q-switched Nd:YAG laser between 27 mJ and 373mJ. By investigating resulting pit formation with Optical Microscopy(OM) and Optical Coherence Tomography(OCT), we analyzed the formation process of spot marking in the multilayer structure of different chemical composition. The localized heating of the substrate in the multilayer thin film caused the short temporal thermal expansion, and absorbed optical energy between reflective and dye interfaces melted dye and increased the volume. During the cooling phase, formation of pit and surrounding rim can be explained by three distinct processes; effect of surface tension, evaporation by spontaneous temperature increase due to laser energy, and mass flow from the recoil pressure. Our results shows that the spot marking formation process in the multilayer thin film is closely related to the layers' physical, chemical, and optical properties, such as surface tension, melt viscosity, layer thickness, and chemical composition.

키워드

참고문헌

  1. Opt. Lett. v.26 no.22 Recording of optical near-field holography K. Kim;B. Lee https://doi.org/10.1364/OL.26.001800
  2. Laser principles and applications J. Wilson;J. F. B. Hawkes
  3. J. Appl. Phys. v.48 no.9 Laser beam interaction with plastic S. J. Slivinsky;N. E. Ogle https://doi.org/10.1063/1.324279
  4. Science v.254 Optical coherence tomography D. Hung;E. A. Swanson;C. P. Lin;J. S. Schuman;W. G. Stinson;W. Chang;M. R. Hee;T. Flott;K. Gregory;C. A. Puliafito;J. G. Fujimoto https://doi.org/10.1126/science.1957169
  5. IEEE J. Sel. Top. Quant. v.7 Optical coherence tomography(OCT): A review J. M. Schmitt https://doi.org/10.1109/2944.983296
  6. J. Appl. Phys. v.62 no.3 Thermal expansion and flow model for pit formation in laser marking of polymeric film optical disks K. F. Wissbrun https://doi.org/10.1063/1.339722
  7. Appl. Phys. Lett. v.40 no.11 Laser marking of thin orgnic films J. J. Wrobel;A. B. Marchant;D. G. Howe https://doi.org/10.1063/1.92957
  8. J. Laser. Appl. v.13 Temperature distribution in laser marking J. C. Conde;F. Lusquions;P. Gonzalez;B. Leon;M. P. Amor https://doi.org/10.2351/1.1373437
  9. J. Appl. Phys. v.61 A model for laser marking of thein orgnic data storge layers by short intense pulse D. A. Hill;D. S. Soong https://doi.org/10.1063/1.337971
  10. J. Appl. Phys. v.54 no.9 Ablative optical recording using organic dye-in-polmer thin films K. Y. Law;G. E. Johnson https://doi.org/10.1063/1.332787
  11. J. Appl. Phys. v.60 no.1 Pit formation during laser marking of thin organic films T. S. Chung https://doi.org/10.1063/1.337627
  12. Proc. SPIE v.2970 Investigatiohns of basic ablation phenomena during laser thrombolysis U. S. Sathyam;A. Shearin;S. A. Prahl;VII. R. P. Anderson(et al.)(ed.) https://doi.org/10.1117/12.275038
  13. J. Appl. Phys. v.85 no.8 Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical Considerations E. G. Gamarly;A. V. RodeB. Luther-Davies https://doi.org/10.1063/1.370333
  14. Optics Lett. v.21 no.12 Multilayer optical storage by low-coherence reflectometry S. R. Chinn;F. A. Swanson https://doi.org/10.1364/OL.21.000899
  15. Optics Express v.11 no.14 Polarization-sensitive optical coherence tomography for photoelasticity testing of glass/epoxy composites J. T. Oh;S. W. Kim https://doi.org/10.1364/OE.11.001669
  16. Opt. Lett. v.22 no.1 Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media Z. Chen;T. E. Miller;D. Dave;J. S. Nelson https://doi.org/10.1364/OL.22.000064
  17. Opt. Lett. v.22 High-speed phase-and group-delay scanning with a grating-based phase control delay line G. J. Tearney;B. E. Bouma;F. G. Fujimoto https://doi.org/10.1364/OL.22.001811
  18. Opt. Express v.3 In vivo video rate optical coherence tomography A. M. Rollins;M. D. Kulkarnis;S. Yazdanfar;R. Ungarunyawee;J. A. Izatt https://doi.org/10.1364/OE.3.000219