Theory and technology of growing striation-free crystals

  • Scheel, Hans J. (SCHEEL CONSULTING)
  • Published : 2004.08.01

Abstract

Striations are growth-induced inhomogeneities which hamper the applications of solid-solution crystals and of doped crystals in numerous technologies. Thus the optimized performance of solid solutions often can not be exploited. The inhomogeneity problem can be solved in specific cases by achieving a distribution coefficient one in growth from melts and from solutions. Macrostep-induced striations can be suppressed by controlling the growth mode, by achieving growth on facets thereby preventing step bunching. Thermal striations are commonly assumed to be caused by convective instabilities so that reduced convection by microgravity or by damping magnetic fields was and is widely attempted to reduce such inhomogeneities. Here it will be shown that temperature fluctuations at the growth interface cause striations, and that hydrodynamic fluctuations in a quasi-isothermal growth system do not cause striations. The theoretically derived conditions were experimentally established and allowed the growth of striation-free crystals of $KTa_{1-x}Nb_xO_3$"KTN" solid solutions. Hydrodynamic variations from the accelerated crucible rotation technique ACRT did not cause striations as long as the temperature was controlled within $0.03^{\circ}$ at $1200^{\circ}C$ growth temperature. Alternative approaches to solve or reduce the segregation and striation problems in growth from melts and from solutions are discussed as well.

Keywords

References

  1. 14th IEEE Photovoltaics Specialists Conference Radiation Damage in GaAs Solar Cells R. Loo;G.S. Kamath;R.C. Knechtli
  2. J. Appl. Phys. v.37 F.S.Chen;J.E. Geusic;S.K. Kurtz;J.C. Skinner;S.H. Wemple
  3. Crystal Growth of Electronic Materials Crystal growth and electrooptic properties of oxide solid solutions H.J. Scheel;P. Gunter;E. Kaldis(ed.)
  4. Solution and precipitation hardening. the Physics of Metals, Part 2, Defects F.R.N. Nabarro;P.B. Hirsh(ed.)
  5. Die Chemie v.47 Aehnlichkeit und Mischbarkeit anorganischer Kristalle F. Laves
  6. Z. Krist v.151 Similarity and miscibility or inorganic compounds F. Laves
  7. J. Crystal Growth v.59 Crystal growth of $KTa_{1-x}Nb_xO_3$ solid solutions by a slow-cooling method D. Rytz;H.J. Scheel
  8. J. Chem. Phys. v.21 The distribution of solute in crystals grown from the melt J. A. Burton;R. C. Prim;W.P. Slichter
  9. J. Crystal Growth v.57 Growth of a mixed crystal from an ideal dilute solution W. Van Erk
  10. Acta Met. v.4 A.J. Goss;K.E. Benson;W.G. Pfann
  11. Sol. State Electron. v.5 W. Bardsley;J.S. Boulton;D.T.J. Hurle
  12. J. Appl. Phys. v.36 Turbulent free convection in Czochralski crystal growth W.R. Wilcox;L.D. Fullmer
  13. Phil. Mag. v.13 Temperature oscillations in molten metals and their relation to growth striae in melt-grown crystals D.T.J. Hurle
  14. J. Mater. Science v.2 Growth striations in vertically pulled oxide and fluoride crystals B. Cockayne;M.P. Gates
  15. Hondbook of Crystal Growth v.1 Defect thermodynamics and phase diagram in compound crystal growth H. Wenzl;W.A. Oates;K. Mika;D.T.J. Hurle(ed.)
  16. J. Crystal Growth v.166 Use of optical diffraction effects in crystals for growth characterisation J. Donecker;B. Lux;P. Reiche
  17. Crystal Growth Technology Control of epitaxial growth modes for high-performance devices H.J. Scheel;H.J. Scheel(ed.);T. Fukuda(ed.)
  18. J. Appl. Phys. v.25 Resistivity striations in germanium crystals P.R. Camp
  19. J. Electrochem. Soc. v.120;121 Experimental approach to the quantitative determination of dopant segregation during crystal growth on a microscale: Ga doped Ge A.F. Witt;M. Lichtensteiger;H.C. Gatos
  20. Crystal Growth Thermo-hydrodynamic oscillations in liquid metals: the cause of impurity striations in melt-grown crystals D.T.J. Hurle;H.S. Peiser(ed.)
  21. Crystal Growth Technology Theoretical and experimental solutions of the striation problem H.J. Scheel;H.J. Scheel(ed.);T. Fukuda(ed.)
  22. Growth and Perfection of Crystals On the kinematic theory of crystal growth and dissolution processes F.C. Frank;R.H. Doremus(ed.);B.W. Roberts(ed.);D. Turnbull(ed.)
  23. Growth and Perfection of Crystals The growth of crystals from solution N. Cabrera;D.A. Vermilyea;R.H. Doremus(ed.);B.W. Roberts(ed.);D. Turnbull(ed.)
  24. Proc. Roy. Soc. v.229 M.J. Lighthill;G.B. Whitham
  25. Appl. Phys. Lett. v.37 Transition to faceting in multilayer liquid phase epitaxy of GaAs H.J. Scheel
  26. J. Crystal Growth v.149 Extremely flat surfaces by liquid phase epitaxy A.A. Chernov;H.J. Scheel
  27. J. Crystal Growth v.118 How does the flow within the boundary layer influence morphological stability of a vicinal Face? A.A. Chernov
  28. Fiz. Metallov Metalloved v.6 K voprosu o volnoobraznom kharaktere raspredelenija primesi vdol'dliny rastush-hego monokristalla A.I. Landau
  29. Current topics in Materials Science Substrates for epitaxial garnet layers: crystal growth and quality D. Mateika;E. Kaldis(ed.)
  30. J. Crystal Growth v.233 Evaluation of experimental parameters for growth of homogeneous solid solutions H.J. Scheel;R.H. Swendsen
  31. J. Crystal Growth v.13;14 Some features on the growth of single crystals of the $Y_3Fe_{5-x}Cr_xO_{12}$ system R. Krishnan
  32. J. Appl. Phys. v.37 Crystal growth of ${\alpha}-Fe_2O_3$ and GaFeO$_3$ by the flux method and segregation studies of $Fe^{3+}$ in $Ga_{2-x}Fe_xO_3$ crystals M. Schieber
  33. Trans. AIME v.194 Segregation of two solutes, with particular reference to semiconductors W.G. Pfann
  34. Crystal Growth from High-temperature Solutions D. Elwell;H.J. Scheel
  35. J. Amer. Chem. Soc. v.77 Phase diagram of the system KNbO$_3\;KTaO_3$ by the method of differential thermal and resistance analysis A. Reisman;S. Triebwasser;F. Holtzberg
  36. J. Crystal Growth v.59 Crystal growth of $KTa_{1-x}Nb_xO_3$ solid solutions by a slow-cooling method D. Rytz;H.J. Scheel
  37. Proc. Combridge Phil. Soc. v.30 The flow to a rotating disc W.G. Cochran
  38. J. Chem. Phys. v.21 Distribution of solute in crystals grown from the Melt. II. experimental J.A. Burton;E.D. Kolb;W.P. Slichter;J.D. Struthers
  39. Z. Phys. Chem. v.47 Theorie der Reaktionsgeschwindigkeit in heterogenen systemen W. Nernst
  40. J. Crystal Growth v.13;14 Accelerated crucible rotation: a novel stirring technique in high-temperature solution growth H.J. Scheel
  41. 14th International Conference on Crystal Growth Grenoble Bulk growth of cadmium mercury telluride (CMT) using the bridgman/accelerated crucible rotation technique(ACRT) P. Capper;C. Maxey;C. Butler;M. Grist;J. Price
  42. Ann. Rev. Mater. Sci. v.4 Nonlinear optical phenomena and materials R.L. Byer
  43. Current Topics in Materials Science v.1 Chemistry and physics of lithium niobate A. Rauber;E. Kaldis(ed.)
  44. Kristall und Technik v.15 P. Reiche;R. Schlage;J. Bohm;D. Schultze
  45. J. Crystal Growth v.62 Crystal growth and characterisation of Striation-Free $KTa_{1-x}Nb_xO_3$(x~0.26) solid solutions H.J. Scheel;J. Sommerauer
  46. J. Crystal Growth v.12 Accelerated crucible rotation:hydrodynamics and stirring effect E.O. Schulz-DuBois
  47. J. Phys. E Scientif. Instr. v.6 A Precise temperature sensor for 600-1600${\circ}C$ H.J. Scheel;C.H. West
  48. J. Crystal Growth v.220 Indium inhomogeneity in $In_xGa_{1-x}Sb$ ternary crystals grown by floating crucible Czochralski method G.N. Kozhemyakin
  49. Semiconductor Silicon Fundamental aspects of Czochralski silicon growth for VLSI K.E. Benson;W. Lin;W.E. Martin;H.R. Huff(ed.);R.J. Kriegler(ed.);Y. Takeishi(ed.)
  50. J. Crystal Growth v.44 Impurities redistribution in EFG J.P. Kalejs
  51. J. Crystal Growth v.35 Solid-solution $LiTa_xNb_{1-x}O_3$ single crystal growth by Czochralski and edge-defined film-fed growth technique T. Fukuda;H. Hirano
  52. J. Crystal Growth v.34 Impurity distribution in crystals grown by the EFG technique S. Matsumura;T. Fukuda
  53. J. Crystal Growth v.60 Shaped melt lowering (SML):a novel growth technique permitting $k_{eff}$=1 S. Miyazawa
  54. J. Crystal Growth v.82 The growth of multicomponent oxide single crystals by Stepanov's technique L.I. Ivleva;Yu. S. Kuz'sminov;V.V. Osiko:N.M. Polozkov
  55. Optical Materials v.4 Growth of SBN single crystals by Stepanov technique for photorefractive applications L.I. Ivleva;N.V. Bogodaev;N.M. Polozkov;V.V. Osiko
  56. J. Crystal Growth v.125 Calculation of the region for the compositional variation-slope of In_{1-x}Ga_xAs$ grown from In-Ga-As solution with GaAs source material K. Nakajima
  57. J. Crystal Growth v.115 Growth of ternary $In_{0.14}Ga_{0.86}As$ bulk crystal with uniform composition at constant temperature through GaAs supply T. kusonoki;C. Takenaka;K. Nakajima
  58. W.A. Bonner
  59. J. Crystal Growth v.137 Normal and zone solidification using the submerged heater method A.G. Ostrogorsky;G. Muller
  60. J. Crystal Growth v.52 Automated pulling of large alkali halide single crystals V.I. Goriletsky;V.A. Nemenov;V.G. Protsenko;A.V. Radkevich;L.G. Eidelman
  61. Crystal Res. and Technol. v.20 Automated growing of large single crystals controlled by melt level sensor L.G. Eidelman;V.I. Goriletsky;V.A. Nemenov;V.G. Protsenko;A.V. Radkevich
  62. J. Crystal Growth v.63 A New magnetic-field applied pulling apparatus for LEC GaAs single crystal growth K. Terashima;T. Fukuda
  63. OBM Techn. Discl. Bull. v.15 Stirring a crystal growing melt in a sealed system J.B. Gunn
  64. J. Crystal Growth v.82 Low frequency vibrational stirring: a new method for rapidly mixing solutions and melts during growth W.-S. Liu;M.F. Wolf;D. Elwell;R.S. Feigelson
  65. Sov. Phys. Cryst. v.10 A.N. Kirgintsev;E.G. Avvakumov
  66. Crystal Res. and Technol. v.20 Y. Hayakawa;M. Kumagawa
  67. J. Crystal Growth v.149 Influence of ultrasonic vibrations on the growth of InSb crystals G.N. Kozhemyakin
  68. Crystallography Reports v.41;41 no.6 Effect of controlled low-frequency vibrations on melt in growth of yttrium-scandium-gallium garnet single crystals N.A. Verezub;E.V. Zharikov;S.P.Kalitin;S.V. Lavrishchev;A.Z. Myal'dun;Yu. M. Papin;A.I. Prostomolotov;N.R. Storozhev
  69. J. Appl. Phys. v.39 Nonmixing cells due to crucible rotation during Czochralski crystal growth J.R. Carruthers;K. Nassau
  70. Proceedings Internatl. Sympos.on High-Purity Materials Optimum convection conditions for Czochralski growth of semiconductors H.J. Scheel;J.T. Sielawa
  71. US patent 5,471,943 Process and device for pulling crystals according to the Czochralski method H.J. Scheel
  72. private communication K. Kakimoto
  73. private communication Zhong Zeng