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Building a Fuzzy Model with Transparent Membership Functions through
Constrained Evolutionary Optimization

Min-Soeng Kim, Chang-Hyun Kim, and Ju-Jang Lee

Abstract: In this paper, a new evolutionary scheme to design a TSK fuzzy model from relevant
data is proposed. The identification of the antecedent rule parameters is performed via the
evolutionary algorithm with the unique fitness function and the various evolutionary operators,
while the identification of the consequent parameters is done using the least square method.
The occurrence of the multiple overlapping membership functions, which is a typical feature of
unconstrained optimization, is resolved with the help of the proposed fitness function. The
proposed algorithm can generate a fuzzy model with transparent membership functions.
Through simulations on various problems, the proposed algorithm found a TSK fuzzy model
with better accuracy than those found in previous works with transparent partition of input

space.

Keywords: Evolutionary algorithm, model interpretability, Takagi-Sugeno-Kang fuzzy model,

time series prediction.

1. INTRODUCTION

Fuzzy systems are successfully applied to many
different application areas. A fuzzy system consists of
several fuzzy IF-THEN rules, which map inputs to
outputs. Fuzzy systems are very suitable for complex
systems when it is difficult or impossible to describe
the system mathematically. One of the most important
considerations when designing a fuzzy system is that
there is rarely a systematic design procedure. The
generation of membership functions for each fuzzy set
is important, as well as the generation of the fuzzy
rules.

There have been many efforts to solve this problem
as well-addressed in [1] including the advantages and
the disadvantages of each algorithm. Due to the
capability of searching irregular and high-dimensional
solution space, the evolutionary algorithms such as
GAs (genetic algorithms) and ESs (evolutionary
strategies) have received much attention recently as in
[1-4] (find additional references and discussions in
those papers). In particular, the Takagi-Sugeno-Kang
(TSK)-type fuzzy model [5] has a great advantage due
to its representative power; it is capable of describing
a highly nonlinear system. In [4] and [6], GAs are
used successfully to design a TSK fuzzy model. They
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used a rule-based approach with the triangular
membership functions and applied GAs, not only to
find the antecedent parameters of the fuzzy sets, but
also to locate the consequent parameters of the fuzzy
model, all of which enlarge the dimension of the
search space as will be addressed in the remainder of
this paper.

In the following, we propose a novel evolutionary
scheme to design a TSK fuzzy model from data. The
identification of the antecedent rule parameters is
carried out via the evolutionary algorithm with the
newly developed fitness function and the various
evolutionary operators, while the identification of the
consequent parameters is made with the data pattern
manipulations and the pseudo inverse method. The
problem of multiple overlapping membership
functions is perceived as a critical issue named ‘model
interpretability’ in fuzzy modeling as noticed in [14,
15]. The occurrence of the multiple overlapping
membership functions, which is a typical feature of
unconstrained optimization, is resolved with the help
of the newly defined fitness function. This is
accomplished while preserving the possibility of
adapting the multiple overlapping membership
functions if necessary to solve the given problem.

Moreover, by taking a partition-based approach to
building a fuzzy model, it will be shown that the
proposed algorithm provides a simple and intuitive
design procedure and even results in superior
performance capability. The remainder of the paper is
as follows. Section 2 explains the TSK fuzzy model
used and develops the procedure to obtain the
consequent parameters in the TSK fuzzy model.
Section 3 describes the evolutionary design process.
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The performance of the proposed algorithm compared
with previous works will be provided in Section 4.
Finally, Section 5 concludes the paper.

2. TSK FUZZY MODEL

2.1. General descriptions

The TSK fuzzy model [5] consists of IF-THEN
rules where the rule consequents are usually constant
values (singletons) or linear functions of the inputs.

Ri :IFx1 1'sAl.1 and :-- X, isAl.n,
Thenyl- =¢;0 6514 et x, (1)

fori=1,2,--~,NR

where N is the number of rules, x=[x,x,,":,x,]
is the input vector, y;is the output of the i-th rule,
4; are the fuzzy sets that are

characterized by membership functions (MFs)
My (x J-), and ¢ are real-valued weight parameters.

antecedent

The model output is computed by
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where 7; is the firing strength of the rule R;, which
is defined as

;= A (X ) x Ay (xp) X+ x Ay (x,,) (3)

x operator in (3) represents ‘fuzzy and’ operation and
the algebraic product is used for this operation. In this
paper, the membership function of an antecedent part
has a Gaussian shape and is represented by the
following equation.

— . — .. 2
gy () = exp o)

Gij

where W and oy

width value of the Gaussian function, respectively.

represent the center value and the

2.2. Structure

To apply any evolutionary computation method for
designing a fuzzy model, the structure of the fuzzy
model should be determined. The structure is closely
related to the representation scheme for evolutionary
computations or other various evolutionary operators.
We used the most general method to build a TSK
fuzzy model. Once the number of membership

Fig. 1. The antecedent rule structure of the fuzzy
model with 2 inputs and 2 MFs for the st
input and 3 MFs for the 2nd input.

functions for each input variable is determined,
antecedents of fuzzy rules are obtained by
combinations of each membership function of every

input variable. If there are N, input variables and
M; MFs for the i-th input, then the resulting fuzzy

model has HZ’]Mi fuzzy rules. Fig. 1 shows an

example when there are 2 input variables, 2 MFs for
the first input variable and 3 MFs for the second
variable. The fuzzy model shown in Fig. 1 has 6 fuzzy
rules. We call this method a ‘partition-based’ fuzzy
model construction for convenience. Despite the fact
that the number of fuzzy rules increases exponentially,
this approach provides a simple and more intuitive
design procedure because it is only necessary to
determine the MFs for each input. Alternatively, there
is also another popular fuzzy structure construction
method when applying evolutionary computation
techniques. In [2] and [6], different MFs have been
used for each fuzzy rule, which we refer to as a ‘rule-
based” fuzzy model construction method for
convenience.

As stated in [1], the design of a fuzzy system can be
formulated as a search problem in high-dimensional
space. It is well-known that the parameters for the
consequent parts can be obtained by various gradient
methods or linear algebraic methods once the
antecedent parts are determined. Also it is generally
believed that it is more difficult to find parameters for
the antecedent parts than to find parameters for the
consequent parts. For these reasons, this paper and
other works mentioned above are focusing on the
design of the MFs of the antecedent parts and,
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therefore, the dimension of the search space is
determined only by the necessary number of tunable
parameters in the antecedent parts. Also, one can see
that the dimension of the search space has close
relation to the complexity of the problem. We will
briefly examine how the dimension of the search
space (i.e., complexity of the problem) varies
according to both of the two approaches.

When using a partition-based method, for example,
if there are 4 inputs, 2 MFs for each input variable,
and 2 tunable parameters for each MF, then this
method builds a fuzzy model with 16 fuzzy rules and
the necessary number of tunable parameters is 16
(4x2x2). If the number of MFs is increased from 2
to 3, then the number of fuzzy rules and the necessary
number of tunable parameters becomes 81 and 24,
respectively. It can be seen that the necessary number
of tunable parameters is not increasing exponentially.
That means that the dimension of the search space is
not increasing exponentially.

In rule-based methods, however, enlargement of the
search space may result even if the resulting fuzzy
model has a less number of fuzzy rules. When one
adopts the methods that are similar to the ones
proposed in [2] and [6], if the number of fuzzy rules
of the resulting fuzzy model is generously allowed to
be 5, then this number of fuzzy rules does not change
even if the number of MFs is changed. The necessary
number of tunable parameters is 40 (2 parameters/MF
x 4 MFs/rule x 5 rules), which is greater than what
is necessary for the ‘partition-based’ model
construction method. If the number of rules is
increased, then the dimension of the search space
becomes larger. The dimension of the search space is
directly related to the complexity of the problem. For
the same dilemma, if the complexity increases, then it
may become more difficult to determine a solution.
For example, one can easily see that it is easier to find
16 optimal parameters than to find 40 optimal
parameters using evolutionary computations or other
search methods. Moreover, when using a rule-based
approach, there can be some cases where there is no
corresponding fuzzy rule or fuzzy membership
function for the particular input state. This may reduce
the generalization ability of the resulting fuzzy model.
As discussed above, both approaches have their
advantages and disadvantages. From the viewpoint of
the dimension of the search problem, however, we
think the membership function-based fuzzy model
construction method is preferable and we have
adopted this method in our paper.

2.3. Calculating weight parameters
The aim of this subsection is to develop a procedure

to obtain the consequent parameters ¢; in (2). Let

the number of input variables be N;, the number of

fuzzy rules be Ny and then we can rewrite (2) in the
following form:

Ng
y=2 fileo T egx oy, Xy, ), (%)
izl
where
N
ﬁzri/zjﬁrj (6)

is the normalized firing strength for the i-th rule. As
stated in [7], (5) is nonlinear in the parameters.
However, if the parameters in the antecedent MFs are
fixed at the beginning of model construction (which is
the case in this paper as will be addressed in Section
III) so that the only free parameters are those in the
linear regression equation, then (5) is linear in the
parameters. Thus, once the antecedent MFs have been
fixed, the consequent parameters Cij in (2) can be

calculated using some algebraic manipulation such as
least square optimization.
A data pattern can be represented as follows:

z=[x,y], (N

where x= [, %2, 5%, 1 is an input pattern and y

is an output pattern. If we rewrite the right part of
(5) in a matrix form, it becomes

C/x, 3

where X =]l ,xl,xz,...’xN[]T c RVIHDAL g

Sico Sien he,
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r . . . ©
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c RNRX(NI+1).

With some matrix manipulations, (8) can be rewritten
into the following form:

y=fC, 10)

where

F=Uifin o fixn, = fugn = fagw, ]

e RUNRX(N+1)]

(11)

and
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(12)

is the weight parameter matrix. Notice that the above
equations correspond to the case when only a single
data pattern is engaged. Assuming there are Ny data

patterns available, that is Z=[z z; --- zy, ], then

we can construct the matrix

F=[FWF@ - TV e RN ANe@i (13

The number in the parentheses represents the index of
the data pattern. If we consider the single-output for

simplicity, then the desired output matrix is
T
Y=[y(1) y(2) - y(Ny)]eRY ™ . Then (10)
becomes
FC=Y. (14)

Thus, the consequent parameter matrix C can be
calculated using the pseudo-inverse method as
follows:

c=FTFy'FTy. (15)

Once we determine the parameters for the antecedent
parts of the fuzzy model, we can easily obtain the
parameters for the consequent parts. In the next
section, it will be explained how to obtain the
parameters for the antecedent parts using an
evolutionary algorithm.

3. EVOLUTIONARY DESIGN PROCESS

3.1. Representation

When designing a fuzzy model using an
evolutionary algorithm, one of the most important
considerations is the representation scheme, that is,
how to encode the fuzzy system into the chromosome.
Since the objective of the evolutionary optimization is
to find an optimal value of centers and widths of the
membership functions, it is only necessary to
represent a MF by 2 real values. If there are M,

( i=1,2,---,N;) MFs for each input variable, then the
total length of an individual (chromosome) becomes
L:Zi]illMi , which is the necessary number of
tunable parameters. An individual is denoted as s,
where k=1,2,---,Np. Np is the population size.

An individual is represented in vector form as in the
following;:

Se@ =11 Viz = iy VN YNy, 1, (16)

where v =[wy,0;] represents the parameters of the

j-th membership function for the i-th input variable
and the number in the parenthesis represents the
generation number.

3.2. Evaluation

Defining a proper fitness function is one of the
most important issues when using an evolutionary
approach since the fitness function guides the
direction of the solution. To evaluate each individual
when using the evolutionary approach, a fitness
function that is appropriate for the given problem
should be devised. The most common way to define a
fitness function is to measure the performance of an
individual in terms of the mean-squared-error (MSE)

1 Nt ~ N2
MSE(Sk)ZN—Z(J’h—J’h) , (7)
T h

where y, is the h-th desired output and 3, is the

h-th model output. Usually, the inverse of the MSE
value is used to evaluate individuals in evolutionary
algorithms. However, if only the MSE is adopted in
evaluating individuals, then there can be multiple
overlapping MFs, which is a typical feature of
unconstrained optimization as noticed in [6] and [8].
If there is an individual that contains multiple
overlapping MFs, but shows relatively good MSE
value at the initial stage of the evolution, then the
individual receives a high fitness value and will have
a high probability of survival, which may degrade the
performance of the entire evolution process in the end.
As well, the resulting overlapping MFs lose their
interpretability [14]. Furthermore, it may be likely that
the performance of the resulting fuzzy model become
worse, since the fact that the overlapping membership
functions cannot distinguish itself from other MFs
means that it lost its freedom of representation ability.
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The length of the j-th input domain :l]

Fig. 2. Definition of the overlapping length in the
penalty function.
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To resolve this problem, constraints are defined in
[6] so that the parameters of fuzzy MFs can vary only
within a predefined range of their initial values. This
approach, however, is somewhat strict in the sense
that the multiple overlapping MFs can still be
generated according to their initial positions. Also in
[14], ¢ -constraints was used to restrict the
overlapping. The constraints were strict and their
method does not permit compromise between
accuracy and interpretability of the fuzzy model. Thus,
in this paper, a penalty function for an individual is
defined. The proposed penalty function actively
calculates the degree of overlapping between two MFs
and is defined as the following:

N y
Pr(sg) = S 2 as)
j=1 |Zj|

where 4; is the length of the i-th overlapping

occurrence between two MFs in the j-th input domain.
%; is the length of the j-th input domain. The
specific level that constrains the overlapping between
two MFs is denoted by ¢ as shown in Fig. 2. Using

this penalty value with the MSE value, the fitness
function is defined as follows:

1

P80 = Y sE G + B PRGsgy”

(19)

where S is a design parameter that is used to make

a compromise between the MSE and the penalty
function. With the proposed fitness function, one can
avoid multiple overlapping MFs and the MF itself can
be located anywhere on the input domain while not
being restricted within the range that is determined by
their initial positions. Since the proposed penalty
function is not a strict constraint on individuals but
rather evaluation criteria for individuals, the proposed
algorithm can even construct a fuzzy model that has
multiple overlapping membership functions if it is
necessary to solve the given problem, which is not the
case when restrictive constraints are used.

3.3. Evolutionary operators
3.3.1 Reproduction

According to the fitness value of each individual,
we first apply a ranking method [9]. After ranking all
the individuals in the population according to their
fitness value, the upper 30% of the population is used
to generate 50% of the new population. The remaining
70% of the population is used to generate 50% of the
new population. Elitism was used to preserve the best
individual. For better convergence performance, 30%
of the new population is replaced by copying an elite

individual into random locations. By hastening the
convergence speed, we need less generations in the
evolutionary  process. However, since rapid
convergence may result in finding local minima, we
maintained the diversity of the population by other
evolutionary operators as shown in the ensuing
several paragraphs.

3.3.2 Crossover

Crossover is the process of exchanging portions of
two ‘parent’ individuals. An overall probability is
assigned to the crossover process, which is the
probability that given two parents, the crossover
operation will occur. For convenience, we rewrite (16)

as s ()=[p py -~ pr] where p; corresponds to

vy in (16). We have used two types of crossover

operations in this paper. The first is a bitwise
crossover. When two parents s,(f) and s,(f) are

selected for the crossover operation, changing point
t is selected randomly within the range of an
individual and swapping occurs as follows:
syt D) =[vy vy oo v Wiy o wp 20)
S+ =[w Wy o Wy vy v
The next crossover is an arithmetic crossover
operator, which produces children using a linear
combination of two parents as follows:

s,(t+D)=a-s,)+(1-a)-s, (1),

3y
So ) =a 5,0 + (1 -a)-5,00),

where the parameter « is generated randomly each
time the arithmetic crossover is applied. The
arithmetic crossover is applied to the center value and
the width value. Generally, the value of « is in the
range of [0, 1], which can only produce a value
between two parameter values of the selected parents.
This is, however, not desirable because the value of
offspring cannot be outside the value of parents. This
can reduce the diversity of the entire population.
Therefore we changed the range of « to [-0.5, 1.5]
so that the center of a membership function can be
located not only inside of the values of two parents,
but also outside. Since the center value of a
membership function can be very distant from the
effective input domain after several arithmetic
crossover operations are applied (which is also not a
desirable result), some boundary values are defined so
that the center values can remain within the effective
input domain. These values are determined according
to the range of each input domain. In summary, the
first crossover helps in changing the structure of fuzzy
model, while the second crossover tries to tune the
parameters of the membership functions.
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3.3.3 Mutation

The next operation is mutation. Mutation consists
of changing an element's individual value at random,
often with a constant probability. Mutation is
performed column-wise for every center value and
every width value of all individuals as follows:

0@t +1)=6(t)+ N0, p), 22)

where € is a parameter value: the center or the
width of a membership function and N(,')
represents normal distribution function, which
generates a random value around the zero-mean with
the variance parameter o . For both the center and

the width, the different values of p are defined as

Pronter ANA P 0 . TESpEctively. As a result of the
crossover operations and the mutation operations, the
width can be less or equal to zero. To prevent this, a
lower boundary value p;, for the width is set.
Since we use the elite-based ranking method, which
can speed up the convergence and can result in
finding local minima, a rather high value was used for
the mutation probability to maintain diversity.

3.4. Summary

Given the data pattern matrix Z, the maximum
number of generation G, , the population size Np,
and the number of input variables N;, we set the
probabilities for the crossover operations and the
mutation operations, O..yer> Pwidhs Pmin and the
design parameters £ and & . According to the

range of each input variable, the boundary values are
determined. The framework of evolutionary procedure
used in this paper is as follows:

1) Generate an initial population
P(0)=[5,(0) 5,(0)---s Np (0)] at random and set
i=0.

2) Using the parameter values of each individual,
construct a fuzzy model and calculate consequent
parameters as addressed in Section II-3 for all
individuals.

3) Evaluate every individual.

4) Apply evolutionary operators to obtain the next
population P(i+1).

5) i=i+1, return to step 2) if the G,
reached or the procedure is terminated

Because elitism is used in the proposed algorithm,

the best fuzzy model is easily extracted when the
entire procedure is over.

is not

4. NUMERICAL EXAMPLES

In the following subsections, we applied the

proposed algorithm to two kinds of problems:
nonlinear dynamic plant modeling and a chaotic time-
series prediction problem.

4.1. A nonlinear plant modeling problem

The aim of this subsection is to find a fuzzy model
for a nonlinear dynamic plant using the proposed
algorithm. We will consider the second-order
nonlinear plant studied in [2,10,11].

y()y=gy(t -1,y —2)) +u(?), (23)
where

)= HEDHE=D0=D=05) (5,
1+y (t—1)+y (t-2)

gy -1),y(t-

The goal is to approximate the nonlinear component
g(y(t-1,y(t-2)), which is usually called the
‘unforced system’ in control literature, using a TSK
fuzzy model. The problem involves 2 inputs and 1
output example. As in [6], 400 simulated data points
were generated from the plant model (23). With the
starting equilibrium state (0, 0), 200 samples of
training data were obtained using a random input
signal u(¢) that is uniformly distributed in
[-1.5,1.5]. The remaining 200 samples of validation
data were obtained using a sinusoidal input signal
u(t) =sin(2zxt/25). The resulting signals are shown
in Fig. 3.

Parameter settings for the given problem are as
follows: The population size Np was 100. The

maximum generation G, was 100. Crossover

probability was 0.6. Mutation probability was 0.3 for
the center value and 0.7 for the width value. g,

and p, .z were 0.05 and 0.05, respectively. f

2

0 50 150 200 250 300 350 400
1 —
_10 50 100 150 200 250 300 350 400
g of :
2 1

0 50 100 150 200 250 300 350 400
t
Fig. 3. Input u(t), unforced system g(t), and output y(t)
of the plant in (23).
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was 0.6 and £ was 0.7. We applied the proposed

algorithm with 3 different settings of the number of
MFs. We used 2, 3 and 4 MFs for each input in each
setting, respectively. A linear consequent TSK model
was used. Because the number of inputs was 2, the
necessary number of tunable parameters was 8 (2
inputs x 2MFs/input x 2 parameters/MF) when 2
MFs were used. Similarly, the necessary number of
tunable parameters was 12 with 3 MFs and 16 with 4
MFs, respectively. We ran the simulation 10 times for
each case and the obtained results are shown in Table 1.
When 4 MFs are used, the minimum MSE (mean
squared error) for both the training and the validation

data were 1.5¢° and 3.4¢°, respectively. The
mean MSE for both the training and the validation

date were 4.8¢™ and 1.13¢7, respectively. When 3
MFs are used, the minimum MSE for both the training

and the validation data were 1.26¢> and 1.2e7 ,
respectively. The mean MSE for both the training and

the validation date were 2.4e¢™ and 5.27¢7 ,
respectively. When 2 MFs are used, the minimum
MSE for both the training and the validation data were

1.41e™ and 1.53¢74, respectively. The mean MSE
for both the training and the validation data were

1.42¢™* and 1.79e'4,respectively.
Fig. 4 presents the desired and the obtained outputs
y(¢) for both the learning and the validation data

using the same u(¢). The difference between the two

outputs is shown in Fig. 5. This result is adopted from
the single simulation where the MSE for the training

pattern is 1.5¢™® and the MSE for the validation

pattern is 3.4¢® with 4 MFs. The MFs for this
single simulation are also shown in Fig. 6 and the
parameter values are summarized in Table II.

To compare our results with those obtained by
different approaches proposed in [6,10,11], the best
results obtained in each case are summarized in Table
1. Also, we build a fuzzy model using AFNIS
algorithm [16], which is one of the most well- known
fuzzy modeling techniques, while changing the
number of MFs for each input from 2 to 4,
respectively. We obtained the best ANFIS model by
searching the optimal number of iterations after
iterating the algorithm 1000 cycles.

In the second row of Table I, the small value of
MSE for the training data in contrast to the MSE for
the evaluation data may indicate overtraining as
pointed out in [6]. Since the necessary number of
tuning parameters is directly related to the dimension
of search space, a column for the necessary number of
tunable parameters Npp is added beside the MSE

results.
From Table 1, one can easily see the effectiveness

¥t

Fig. 4. Desired output and obtained output y(t) for
both the learning and validation data using
the same u(t) and the built fuzzy model.
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Fig. 5. Residual errors between the desired and the
obtained output for both the learning and
validation data.
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Fig. 6. An example of the obtained membership
functions for both y(i-1) and y(t-2) by the
proposed algorithm.

of the proposed algorithm. With the small number of
necessary tunable parameters, the proposed algorithm
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Table 1. Comparison results for the nonlinear system
modeling problem.

Methods | N | Nzp | MSE(rain) | MSE(val)
[10] 24 - 2.0e(-6) | 6.4e(-4)
[11] 25 50 23e(-4) | 4.1e(-4)

20 40 6.8e(-4) | 2.4e(-4)
[6] 5 30 5.8¢(-3) | 2.5e(-3)
5 24 7.5¢(-4) | 3.5¢(-4)
4 12 1.2¢(-3) | 4.7e(-4)
ANFIS[16] | 4 4 1.54e(-4) | 2.0e(-4)
9 12 1.33e(-4) | 1.65¢e(-4)
16 16 5.59¢(-5) | 5.76e(-4)
Proposed 4 4 min. 1.40e(-4) | 1.53¢e(-4)
With 2MFs mean. 1.42¢e(-4) | 1.79¢(-4)
Proposed 9 12 min. 1.26e(-5) 1.2¢e(-5)
With 3MFs mean.2.40e(-5) | 5.27e(-5)
Proposed 16 16 min. 1.50e(-6) | 3.4e(-6)
With 4MFs mean. 4.80e(-5) | 1.13e(-5)

Table 2. An example of the obtained parameter values
for the MFs for the (23) when 4MFs are used.

y(t-1) center 1758 | -1.717 | -0.548 | 0.489
width 1.098 0.797 0.873 0.837
y(:-2) center 1.611 -0.526 0.402 -1.962
width 1.056 0.805 0.738 1.100

can find a TSK fuzzy model that can effectively
approximate the given plant with fewer errors. The
more the number of MFs increases, the more the
proposed algorithm becomes effective. Since the
ANFIS model uses hybrid gradient methods, it can
finally drive the center of the MF into the undesirable
position as shown in Fig. 7, or it can make the width
of the MF almost negligible as shown in Fig. 8. Fig. 7
was the case for which 3 MFs were used and Fig. 8
was the case for which 4 MFs were used for the
ANFIS algorithm. In this case, the iteration was 1000.
Meanwhile, the proposed algorithm can find a set of
MFs that does not lose the interpretability as shown in
Fig. 6. This is mainly due to the proposed fitness
function. To see the effect of the penalty function
more clearly, we separately run the proposed
algorithm with the same settings. Only the g was

set to 0, which means no penalty constraints were
imposed. Figs. 9 and 10 show the obtained MFs
without using the penalty function. As shown in the
figures, the resulting MFs overlap each other,
signifying that the resulting MFs lose their
interpretability. Also the performance of the fuzzy
model becomes inferior, since the fact that the
overlapping MFs cannot distinguish themselves from
other MFs, signifying a loss of freedom of
representation ability. However, with the help of
penalty constraints, the proposed algorithm can find
non-overlapping MFs as shown in Fig. 6.
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Fig. 7. An example of the obtained MFs for both y(t-
1) and y(t-2) by the ANFIS algorithm with 3
MFs.
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Fig. 8. An example of the obtained MFs for both y(t-
1) and y(t-2) by the ANFIS algorithm with 4
MFs.

4.2. Time series prediction problem

A time-series prediction problem based on the
chaotic Mackey-Glass differential equation [12] is one
of the most famous benchmarks for comparing the
various abilities of a fuzzy system and neural
networks. A time series is generated using the
following equation.

a0 _ .
dr b x(t)+1+x1°(t—r)’

a-x(t—71) 25)

where b=0.1,a=0.2,and 7=17 asin[2]and[I3].
The task of a fuzzy model is to predict the value of the
time series x(#+7) from the knowledge of n

samples of the previous time series as in the following
equation [2]:
Xt +T) = fpr (x(0),x(t = A),---, x(t — (k —1)A), (26)

where A is the lag time and k£ is an embedding
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Fig. 9. An example of the obtained MFs for the plant
(23) without PF(s) (i.e., #=0), when 3 MFs

are used for the proposed algorithm.
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Fig. 10. An example of the obtained MFs for the plant
(23) without PF(s) (i.e., £ =0), when 4 MFs

are used for the proposed algorithm.

dimension. To make comparisons, k=4 and
A=T=6 were chosen. The data points were
generated with the initial condition x(0)=1.2. The
1000 patterns used in the training and in the validation
phase have the following format
[x(2 —24);x(t —18); x(¢ —12); x(t — 6); x(¢)] from the
generated data with ¢ in [123,1123]. The first 500
patterns were used in the training phase, whereas the
last 500 were used in the validation phase. The
problem involves 4 inputs and 1 output example.

The population size Np was 100. The maximum

generation G, was 300. Crossover probability

was 0.7. Mutation probability was 0.6 for the center
value and 0.6 for the width value. f was 0.6 and &

was 0.6. A linear consequent TSK model is used.
Because the number of inputs is 4, the necessary
number of tunable parameters was 16 (4 inputs x 2
MFs/input x 2 parameters/MF). We ran the
simulation 10 times and averaged the results.

The minimum RMSE (root mean squared error) for
both training and validation data were 0.0014 and
0.0013, respectively. The mean RMSE for both
training and validation date were 0.0015 and 0.0014,
respectively. Figs. 11 and 12 indicate the desired and
the obtained outputs for learning data and validation
data, respectively. Because no visible difference is
shown in Figs. 11 and 12, the difference between the
two outputs is shown in Figs. 13 and 14. The obtained
MFs are presented in Fig. 15 and the values of the
obtained parameters are summarized in Table 3.

Table 3 presents comparison results of the
prediction performance for the validation data among
various predictors. Since the result by [13]
outperforms other approaches such as cascade neural
network, autoregressive model, etc, we only adopted
the result by [13]. For comparison, we also trained a
RBF model, which is not included in the work of [13],
with 100, 200 and 500 hidden neurons. K-means
clustering and gradient method was used to obtain
optimal value for the center, width and output weights
of RBF networks [17]. When we use 500 hidden
neurons, the RBF model perfectly approximates the
training data. However, the error for the validation
data becomes worse because of overfitting. In fact, the
best results reported in literature came from the
GERFEX (genetic fuzzy rule extractor), which
requires 20 rules. We can actually obtain an ANFIS
model of which performance is better than that
reported in [13] and [2]. Gaussian MFs and product
operation for fuzzy reasoning was used for the ANFIS

Table 3. An example of the obtained parameter values
for the MFs for the Mackey-Glass time series

prediction problem.
wo | o | o | o
x(+-12) width 09534 (l)ggg
| | o
20 | Saw | 0w | osas

Table 4. Comparison results for the nonlinear time
series prediction problem.

Methods RMSE
Kim and Kim [13] 0.026
GERFEX [2] 0.00061
RBF network (100) 0.0054
RBF network (200) 0.0036
RBF network (500) 0.0336
ANFIS (16) 0.0045
Proposed algorithm min. 0.0013
mean. 0.0014
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Fig. 13. Residual error for Mackey-Glass problem
(learning) RMSE = 0.0014.

model. Although Ngpp (the necessary number of

tunable parameters) does not obviously appear in [2],
we can infer the necessary number of tunable
parameters from the fact that a) the GERFEX uses
N; MFs in each fuzzy rule to the maximum, b) each
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Fig. 14. Residual error for Mackey-Glass problem
(validation) RMSE = 0.0013.
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Fig. 15. An example of the obtained MFs for the
Mackey-Glass time series prediction problem.

fuzzy rule requires different fuzzy MFs and c) each
MF uses 2 parameters:. center and width. The
necessary number of tunable parameters may be about
160, which is much greater than that of the proposed

algorithm in this paper, which is only 16. Also Gy,

in [2] was 50,000, whereas G,  in the proposed

algorithm was 300, which proves the fact that the
necessary update to find an optimal solution is greatly
reduced due to the reduction of the search space (i.e.,
the reduction of the complexity of the problem). It is
more difficult to find 160 optimal parameters than to
find 16 optimal parameters. The performance of the
proposed algorithm also surpasses all previous works.
It can be said that the proposed algorithm achieved
superior performance with a smaller number of
tunable parameters. Also in GERFEX, since different
membership functions are used in each fuzzy rule, the
resulting fuzzy model loses its interpretability.

In summary, it can be said that the proposed
algorithm improved both the prediction capability and
the compactness of the fuzzy system with a smaller
number of parameters while not losing its interpretability.
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5. CONCLUSIONS

An evolutionary design process of the TSK type
fuzzy model is studied in this paper. The occurrence
of the multiple overlapping membership functions,
which is a typical feature of unconstrained
optimization, is resolved with the help of the newly
defined fitness function. This was accomplished while
preserving the possibility of adapting the multiple
overlapping membership functions if deemed
necessary to solve the given problem. It also improves
the interpretability of the resulting fuzzy model by
actively maintaining a certain degree of overlapping
between membership functions. Through the
evolutionary optimizations, the values of the antecedent
parameters are identified and the identification of the
consequent parameters is made compactly with the
data pattern manipulations and the pseudo inverse
method. By taking a partition-based approach to
building a TSK fuzzy model, the proposed algorithm
provides a simple and more intuitive design procedure
and even results in better performance capability.

To demonstrate the effectiveness of the proposed
algorithm, several simulations both for the nonlinear
dynamic system modeling and for a chaotic time
series prediction problem have been performed. It was
shown that the proposed algorithm found a TSK fuzzy
model that produces a smaller error than established in
previous works with a smaller number of necessary
tunable parameters.
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