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Fuzzy-Bayes Fault Isolator Design for BLDC Motor Fault Diagnosis

Suhk-Hoon Suh

Abstract: To improve fault isolation performance of the Bayes isolator, this paper proposes the
Fuzzy-Bayes isolator, which uses the Fuzzy-Bayes classifier as a fault isolator. The Fuzzy-Bayes
classifier is composed of the Bayes classifier and weighting factor, which is determined by
fuzzy inference logic. The Mahalanobis distance derivative is mapped to the weighting factor by
fuzzy inference logic. The Fuzzy-Bayes fault isolator is designed for the BLDC motor fault
diagnosis system. Fault isolation performance is evaluated by the experiments. The research
results indicate that the Fuzzy-Bayes fault isolator improves fault isolation performance and that
it can reduce the transition region chattering that is occurred when the fault is injected. In the
experiment, chattering is reduced by about half that of the Bayes classifier’s.

Keywords: Bayes isolator, fault diagnosis, Fuzzy-Bayes isolator, transition region chattering.

1. INTRODUCTION

The purpose of Fault Detection and Isolation (FDI)
is to detect a fault as it occurs and to identify the
component in order to perform appropriate
maintenance before critical system malfunctions occur.
FDI can be applied to plants, which demand a high
degree of system reliability such as power plants and
avionics systems.

A brushless DC (BLDC) motor is essentially an ac
motor in every respect. However, the performance of
the BLDC motor is found to be equal or superior to
the efficiency of the high-performance dc servo motor.
In the BLDC motor, the commutation of the coil is
carried out by an electronic inverter. This eliminates
the brush sparking of the conventional DC motor,
which reduces the insulation resistance to an
unacceptable limit. Nevertheless, a BLDC motor can
also fail. In particular, overload and overheating can
damage the stator coil, thus resulting in decreased
performance. Moreover, necessary sensors for position
detection, ¢.g., hall sensors, can also fail as damaged
or broken bearings may result in increased friction. In
the closed-loop operation of servo systems, these
faults often remain hidden by feedback. Only if the
entire device fails, i.e., the motor stops turning, does
the malfunction becomes visible. Therefore, it is
desirable to detect an incipient fault as early as
possible to perform maintenance before failure of the
device occurs [1]. Xiang-Qun ez al. [2] discussed DC
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motor fault detection and diagnosis by parameter
estimation and neural network. Where the
electromechanical parameters of the motor can be
obtained from the estimated model parameters, the
relative changes of electromechanical parameters are
used to detect motor faults. The neural network is
used to isolate faults based on the patterns of
parameter changes. Moseler et al. [3] presented a real
time fault detection method for a BLDC motor driving
a mechanical actuation system in which they drive a
mathematical model based on the bridge supply
voltage, current and rotor velocity.

This paper proposes the Fuzzy-Bayes classifier,
which consists of the Bayes classifier, and weighing
factor. Because the Bayes classifier has optimal
classification performance, the Bayes classifier is a
representative algorithm of pattern classification. And
it is used for fault diagnosis of the process rig [4], and
BLDC motor [5]. The Bayes classifier depends on
probability density functions, and a priori probabilities.
The Mahalanobis distance derivative is mapped
according to weighting factor by fuzzy inference logic.
This means that the feature data dynamics are
included in the classifier. Therefore, the classifier can
be more insensitive to noise. The Fuzzy-Bayes
classifier is designed for the BLDC motor fault
diagnosis system, which is divided into a fault
detection part, and a fault isolation part. The fault
detection element detects fault symptoms by
estimating parameters. Then, the fault symptoms are
classified into faults by the fault isolator. By including
the weighting factor, performance of the Bayes
isolator is improved. The experiment results support it.

Section 2 describes the Bayes classifier, and
proposes the Fuzzy-Bayes classifier. The BLDC motor
fault diagnosis system is presented in Section 3. In
Section 4, the BLDC motor fault diagnosis results
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according to the Fuzzy-Bayes classifier are compared
to that of the Bayes classifier. The conclusions are
described in Section 3.

2. FUZZY-BAYES CLASSIFIER
2.1. Bayes classifier

The fundamental principle of the Bayes classifier is
the Bayes rule, shown in (1)

Pl x)- 21 0P@) 0
Zp(x|wj)P(a’j)
j=1

The Bayes rule indicates how the information of
known probability density functions, p(x|w,;), and a
priori probabilities, P(w;), can be used to calculate the
a posteriori probability, P(w;x). The minimum-error-
rate classification can be achieved by use of the Bayes
discriminant functions [6],

gi(x) =In P(x|w;) + In P(w,;), where i=1, -, ¢, (2)

and this expression can be readily evaluated if the
densities p(x|w;) are normal distribution - that is, if
px|lwy) ~ N, ¥ ;). In this case, we have

gi(x)=*%(x—,ui)tzl-_l(x—,ui)—%ln2ﬂ
(3)
_%ln|2i | +1n P(e;).

All the necessary information of each class and feature
cluster is contained in the mean vector and covariance
matrix. The center of each cluster is determined by the
mean vector and the shape of the cluster by the
covariance matrix. The quantity

P =(x—u) Zi_l(x— 4;) from (3) is often called

the Mahalanobis distance from observation x to the
center of the cluster u.

2.2. Fuzzy-Bayes classifier
Equation (4) expresses the decision rule of the
Fuzzy-Bayes classifier.

If f;>f;,

Decide o; if f;-P(w;|x)> f;-P(w;|x);

otherwise decide w ;-

where,
1 u, = bound,
fi=1 0=/ <1 bound| <uy <bound, &)
0 uy < bound,

The bound;, and bound, present the minimum and
maximum value of the input u,. The input u; is
mapped to weighting factor, f;, by the fuzzy inference
logic. The posteriori probability, P(; ]x ), can be
determined by the Bayes rule. Therefore, the Fuzzy-
Bayes classifier is composed of the Bayes classifier
and weighting factor. The proposed discriminant
function is presented in (5),

g0 =2 (=) T - ) - 12z
&)
—%ln|zi | +1In P(@;) + f;(2).

In this paper, Mahalanobis distance derivative is
selected as an input ;. Thus, the feature data dynamic
characteristic is involved in the weighting factor. The
classification algorithm of the Fuzzy-Bayes classifier
is depicted in Fig. 1.

If the input u; is greater or lower than bound, or
bound,, weighting factor, f;(¢), is mapped to 1 or 0.

If the u; is located between the lower and upper bound,
the weighting factor is determined by fuzzy inference
logic. To determine the weighting factor, two rules
fuzzy model is supposed, and the rules are

IFu;is A' THEN b,
IFu;is A> THEN b, (6)

where, 4’ denotes the j-th linguistic value and b; =

bound;<Ju, < houndy

u>bound,

Action: Interpretation

1 : Mahalanobis distance derivative

b, : big weighting factor

by t weighting factor is determined by fuzzy logic
b : small weighting value

c . Fuzzy-Bayes discriminate function

Fig. 1. The classification algorithm of the Fuzzy-
Bayes classifier.
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aipt+ a; I(ul)z + e +a,»,,,(u,,)2. Therefore, the weighting
factor is obtained by defuzzification

R
Dt
ﬁ=——z’=1 a3 (7

R
Z i1 Mi

In this paper, we consider the R=2 case, and is
defined in (8)

:ui(uliu29"'7un): ,uAlj (ul)*’uAé‘ (uZ)*'“*qul (un) .
(3)

The p;(u,uy,...,1u,) presents the certainty that the

premise of rule i matches the input information, u;,
when we use singleton fuzzification [7]. Therefore, (7)
is represented in (9),

- llllbl + ,Uzbz . (9)
H

i

If u(¢t)<bound, then g =1, and u, =0, and if
uy(t) > bound, then p4=0, and u, =1. In between
bound, <u (t)<bound, , the output f; is an
interpolation amid the two lines g and 4, . The
fuzzy membership functions are shown in Fig. 2.

3. BLDC MOTOR FAULT DIAGNOSIS
SYSTEM

3.1. System configuration

Fig. 3 shows the BLDC motor fault diagnosis
system. The system consists of a FDI-master, smart
network board, and RS-485 network. The smart
network board acquires bridge current and motor
speed. The acquired information is transmitted to the

RS-485 Network
node 0 _|_ node 1_
- - '_ - — 1
RS-485/UART RS-485/UART :
y L
Parameter A/D conversion
estimation & coding

\

— e o s aen o e wED o=

) Acquire BLDC
Fault detection & motor
{dentification information l
¥ - Smart network

board

Amplifier I

Fig. 3. The BLDC motor fault diagnosis scheme.
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Fig. 4. The BLDC motor fault diagnosis apparatus
picture.

FDI-master using the RS-485 communication channel.
By design of periodic and deterministic protocol, a
real-time fault diagnosis system can be implemented.
Figure 4 shows a picture of the test apparatus.

3.2. Model-based fault detection

In the diagnosis system, the BLDC motor fault
detection model, which is presented by Moseler ef al.
[3,8,9], and least square algorithm are used for model-
based fault detection. The model is presented as
follows:

> (10)
+§(Kel +K32 +Ke3)a)r(t)a
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Fig. 5. Block diagram of the BLDC motor fault
detection model.

where \7([) = vam (t) (vam(t)=pwm (0 ' Vsupplya

pwm(t) €[0,1]), R; is the resistance and K,; (i=1, 2, 3)
is the back-EMF constant of each coil. Substituting
2/3-(R + R, + Ry) with R and 2/3-(k, +k,p +k.3)
with K, leads to the equation

V() =Ri () + Kpo,(f) . (11)

The average phase current i can be driven from the
bridge current by considering the power balance

Vo iy () =V () -1 () = pwm(t) vy, -1, (12)

where v, and i, denote bridge supply voltage and
bridge current. Hence,

T(t) =iy (t)/ pwm(t). (13)

Fig. 5 presents the block diagram of the model, where
Kr is torque constant and J denotes the inertia of the

rotor. The c,-sgn(w,(¢)) is coulomb friction, and
c,m,(t) is viscose friction.

The quantitative knowledge, the mathematical
model of a system, is useful in the detection of a fault.
If the system is presented with the mathematical
model, we can estimate model parameters based on
input and output signals (u(z) and y(¢)). The least
square algorithm is a very simple and robust means of
estimating parameters [10].

Perhaps the most basic relationship between the
input and output is the linear difference equation:

y(t):—aly(t—l)—...—a,,y(t—n)+b1u(t—l)+(14)
oo+ b u(t —m).

For more compact notation we introduce the vectors:

0=[a, .. a, b .. byl , (15)
o)== .. —pt—-n) u@-1) .. ut-m)].
(16)

With these, (14) can be rewritten as

yy=9" 1. (17
The least square algorithm is presented as
R N - N
Oy =| 2o (| 2 e@y®). (18)
t=1 t=1

(18) can be restated as the recursive least square
equation (19) to (21)

6)=0( -+ L) y0-¢" WO¢-D], (19

L= PE=Dp®)

- . , (20)
A0+ ¢ ()Pt -Dep(2)

T
Pl =L | Py 1)~ 2EDe00 OPC-D | o,
A A1) + ¢ ()Pt ~1)p(1)

where L(t), prefilter allows extra freedom in dealing
with non-momentary properties of the prediction
errors. In order to let the parameter estimation to
follow changing in the system, a forgetting factor 4,
which means that older values of u(t) and y(¢) do
not have as much weight as the newer values, is used.

The forgetting factor A is normally chosen between
0.95 and 1 [11].

4. EXPERIMENTAL STUDIES

The Fuzzy-Bayes isolator is designed for the
POWERTEC, L42ALA1100700000 BLDC motor
fault diagnosis. The nominal motor parameters are
listed in Table 1, where R and Kg are calculated using
(22)-(23),

R= 2/3-(R +R, + Ry)=2.14Q, (22)
Kp= 2/3-(ky +kep +ke3)=0.04 V/iipm.  (23)

In the experiments, three fault types are considered.

Table 1. The nominal BLDC motor parameters.

Parameter Node 1
resistance, R; 1.07Q
inductance, L; 6 mH
back-EMF constant, K,; 0.02 V/rpm
torque constant, Kr 0.175 Nm/A

number of pole pairs 4
resistance, R 2.14Q
back-EMF constant, K¢ 0.04 V/rpm
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Table 2. The three fault types and injection methods.

Fault Fault type Fault injection
No. method
1 fault-free none
2 increase of R; add resistance of 2 Q
3 more increase of R; | add resistance of 4 Q

fault 3

fault 1
. fault 2

fault 1

fault 2

Fig. 6. The scatter diagram of three fault classes (a),
and class-conditional probability density (b).

Table 3. The probability knowledge of each fault

class.
Fault RIQ) K [V/rpm]
No. Mean Varlezlnce Mean Varlazmce
13 ] [y] o]
1 2.0435 | 4.4703e-4 | 0.0262 | 6.5171e-9
2 2.2245 0.0025 0.0262 | 8.2656e-9
2.2939 | 6.2362e-4 | 0.0264 | 8.0887¢-9

Fault number 1 is the fault-free condition, and faults 2
and 3 are related with resistance variation. An
overload is the most significant fault of the motor and
is expressed as a heat. The motor coil resistance is
changed with the heat. If the coil temperature changes
from 20°C to 1007, the coil resistance increases by
about 30%. The overheating reduces the motor
winding life [12]. Therefore, assumed faults are
practical. The three fault types and fault injection
methods are listed in Table 2.

In the experiments, it is assumed that the three fault
classes contain normal class-conditional probability
density, and same prior probability. To design the
Bayes isolator, the mean and variance of each class
are calculated using 30000 training data. Fig. 6 shows
the class scatter diagram, and class-conditional
probability densities. The mean and variance are listed
in Table 3.

To estimate motor parameters, the pseudo-random
binary signal (PRBS) input is designed with a 5-cell
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Fig. 7. The system input (speed command) and output
(speed output) signal.

shift register. Therefore, the maximum period length
M=2-1=3] is obtained. The system input and output
signals are plotted in Fig. 7.

The Mahalanobis distance derivative, (24), is
selected as the input of the fuzzy inference logic.

u; (= (Mahalanobis distance(i)
-Mahalanobis distance(i-1)) / frame time. (24)

To guarantee a constant frame time, function b; is
defined with constant maximum and minimum
values, (25), which use only the necessary calculation
time,

b, = [erfmin»> €Fmax 1= [1.5, -1.5]. (25)

The designed two fault diagnosis methods, the
Bayes classifier and the Fuzzy-Bayes classifier, are
compared by two experiments. The first experiment is
the fault isolation experiment. For this experiment, the
BLDC motor starts rotating with the occurrence of a
fault. Then the designed fault diagnosis scheme
isolates the fault. The second experiment is the fault
diagnosis experiment. The BLDC motor is derived
with a fault-free condition. Some time passed before
the fault is injected. The fault diagnosis scheme
monitors system condition.

This first set of experiments are divided into two
experiments. One is fault 1, and fault 2 isolation
experiment. The other is fault 2, and fault 3 isolation
experiment. Fig. 6 shows that fault 1 and fault 2 are
independent of each other, and fault 2 and fault 3 are
highly coupled with each other. In the experiments, a
predefined fault is injected before diagnosis is
initiated. The estimated resistances for the fault
detection are shown in Fig. 8. In the figure, each data
is composed of 100000 samples.

Firstly, Fig. 8(a) data is applied to an input of the
Bayes fault isolator. The fault isolation result is shown
in Fig. 9(a).
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are injected: (a) fault 1 resistance, (b) fault 2
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Fault Diagnosis Using Bayes Classifier (Two-Category Classification)
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Fig. 9. The fault 1, and fault 2 isolation results using
the Bayes isolator: (a) input is fault 1 data, (b)
input is fault 2 data.
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Fig. 10. The fault 1 and fault 2 isolation results using
the Fuzzy-Bayes isolator: (a) input is fault 1
data, (b) input is fault 2 data.

In the ideal case, the fault isolation result must
indicate fault 1. In the figure, fault 2 indicating data is
the error. After that, Fig 8(b) data is applied, and its

Table 4. The fault isolation result of the Bayes
classifier: fault 1 and 2 classification cases.

Correct diagnosis Error data
Input data
data Sample | Recogni- | Sample Error
numbers | tionrate | numbers rate
[samples] [%] [samples] [%]
Fault | 39052 78.104 10948 21.896
Fault 2 49502 99.004 498 0.996
Total 88554 88.554 11446 11.446

Table 5. The fault isolation result of the Fuzzy-Bayes
classifier: fault 1 and 2 classification cases.

Correct diagnosis Error data
Input data -
data Sample Recogm- Sample Error
numbers | tionrate | numbers rate
[samples] [%] [samples) [%]
Fault 1 39977 | 79.954 10023 | 20.0466
Fault 2 49455 | 98.910 545 1.09
Total 89432 | 89.432 10568 | 10.568

Fault Diagnosis Using Bayes Classifier (Two-Category Classification)
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Fig. 11. The fault 2, and fault 3 diagnosis results using
the Bayes classifier: (a) input is fault 2 data,
(b) input is fault 3 data.

result is plotted in Fig. 9(b). The Fig. 8(a), and (b)
data are also applied to the Fuzzy-Bayes classifier.
The fault isolation result of the Fuzzy-Bayes isolator
is depicted in Fig. 10. The results are listed in Table 4,
and Table 5.

The first experiment results indicate that the Fuzzy-
Bayes isolator improves fault isolation rate by 0.878%,
and reduces error rate by 0.878% more than the Bayes
isolator.

Secondly, Fig. 8(b), and Fig. 8(c) are used as an input
of the two fault isolators. The Fig. 6 scatter diagram
shows that faults 2 and 3 are highly coupled, therefore
isolation will be difficult. The isolation results are
depicted in Figs. 11 and 12 and listed in Table 6 and
Table 7. In the results, the Fuzzy-Bayes isolator
increases isolation rate by 0.065%, and reduces error
rate by 0.047% more than the Bayes isolator.



360
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Fig. 12. The fault 2, and fault 3 diagnosis results
using the Fuzzy-Bayes classifier: (a) input is
fault 2 data, (b) input is fault 3 data.

Table 6. The fault diagnosis result of the Bayes
classifier: fault 2 and 3 classification cases.

Correct diagnosis Error data
Input data -
data Sample | Recogni | Sample Error
numbers | -tion rate | pumbers rate
[samples] [%] | [samples] [%]
Fault 2 498 0.996 49502 | 99.004
Fault 3 49988 | 99.976 12 0.024
Total 50468 | 50.468 49514 | 49.514

Table 7. The fault diagnosis result of the Fuzzy-
Bayes classifier: fault 2 and 3 classification

cases.
Correct diagnosis Error data
Input data -
data Sample Recogni Sample Error
numbers | -tionrate | numbers rate
[samples] [%] [samples] [%]
Fault 2 545 1.09 49455 | 98.91
Fault 3 49988 | 99.976 12 | 0.024
Total 50533 | 50.533 49467 | 49.467

In the second experiment, fault diagnosis 1is
performed under fault inject condition. The BLDC

motor starts with a fault free condition, fault number 1.

After 750 seconds pass, fault 2 is injected. The fault
diagnosis results of the Bayes classifier and Fuzzy-
Bayes classifier are depicted in Figs. 13 and 14. The
two figures have two transition regions, which are
related with the forgetting factor. In the experiments,
the feature data is estimated with a 0.9999 forgetting
factor, and it gives 150 seconds, 10000 samples as
transition time.

The chattering area in transition region 1 of Fig. 13
is about 135 seconds, and that of Fig. 14 is about 120
seconds. They are the initial time transition regions.
After injection of a fault, the transition region 2

Suhk-Hoon Suh
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Fig. 13. The fault diagnosis results of the Bayes
classifier under fault injection condition: (a)
estimated feature data, and (b) fault diagnosis

result.
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Fig. 14. The fault diagnosis results of the Fuzzy-Bayes
classifier under fault injection condition: (a)
estimated feature data, and (b) fault diagnosis

result.

appears. Transition region 2 has about 66.7 seconds of
chattering area in Fig. 13.

In Fig. 14, chattering area is reduced to about 33.3
seconds by the Fuzzy-Bayes classifier. These results
show that the Fuzzy-Bayes classifier has an advantage
in the transition region. The fault type implies the
condition of the current system. Because the
chattering is the undetermined condition, reducing
chattering is important for fault diagnosis.

To verify performance of the Fuzzy-Bayes classifier,
we define three motor resistance variation faults, and
conduct two experiments. The defined fault 1 and
fault 2 have independent probability characteristics.
But, that of fault 2 and fault 3 is highly coupled.

In the first experiment, the fault 1 and fault 2
isolation experiments, results show that the Fuzzy-
Bayes isolator improves fault isolation rate by 0.878%,
and reduces error rate by 0.878% more than the result
of the Bayes isolator. In the fault 2 and fault 3
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isolation experiments, the Fuzzy-Bayes isolator
improves isolation rate by 0.065%, and reduces of
error rate by 0.047% more than the Bayes isolator.
Because the experiment is conducted using static data,
the performance of the Fuzzy-Bayes isolator is
slightly improved.

In the second experiment, the fault diagnosis
experiment, results show that the Fuzzy-Bayes isolator
can reduce the transition region chattering that is
occurred when initial time and fault are injected. In
this experiment the chattering is reduced by about half
that of the Bayes isolator.

5. CONCLUSIONS

This paper proposes the Fuzzy-Bayes classifier,
designed as a fault isolation technique for the BLDC
motor fault diagnosis system. It is composed of the
Bayes isolator and weighting factor, which is
determined by fuzzy inference logic. For the
experiments, the Mahalanobis distance derivative is
used as an input of the fuzzy inference logic, and
mapped according to weighting factor. Therefore, the
weighing factor reflects the feature data dynamics.
The Fuzzy-Bayes isolator shows improved fault
isolation performance over the Bayes isolator. The
two experiment results support it. From the
experiment results, we can conclude that the proposed
Fuzzy-Bayes isolator improves the fault diagnosis
performance more significantly than the Bayes
isolator. Because the weighting factor reflects the
feature data dynamics, the Fuzzy-Bayes isolator can
reduce transition region chattering.

REFERENCES

[11 T. G. Park, Fault Detection and Isolation
Schemes Using State Observers and Parity
Equations, Ph.D. thesis, Dankook Univ., 1998.

[2] X.-Q. Liu, H.-Y. Zhang, J. Liu, and J. Yang,
“Fault detection and diagnosis of permanent-
magnet DC motor based on parameter estimation
and neural network,” IEEE Trans. on Industrial
Electronics, vol. 47, no. 5, pp. 1021-1030,
October 2000.

[3] O. Moseler and R. Isermann, “Application of
model-based fault detection to a brushless DC
motor,” IEEE Trans. on Industrial Electronics,
vol. 47, no. 5, pp. 1015-1020, October 2000.

[4] O. Nerretranders, Fault Diagnosis Using
Parameter  Estimation  and  Supervised
Classification Techniques, Intelligent Systems
Laboratory Heriot-Watt University, 1997.

[51 S. H. Suh, and K. J. Woo, *“Serial
communication-based fault diagnosis of a BLDC
motor using Bayes classifier,” International
Journal of Control, Automation, and Systems,
vol. 1, no. 3, pp. 308-313, September 2003.

[6] R.O. Duda, P. E. Hart, and D. G. Stork, Pattern
Classification, John Wiley & Sons, Inc., 2001,

[71 K. M. Passino and S. Yurkovich, Fuzzy Control,
Addison-Wesley, 1998.

[8] O. Moseler and R. Isermann, “Model-based fault
detection for a brushless DC motor using
parameter estimation,” IECON, pp. 1956-1960,
1998.

[9] O. Moseler, D. Juri¢i¢, A. Rakar, and N. Miiller,
“Model-based fault diagnosis of an actuator
system driven by the brushless DC motor,” Proc.
of the American Control Conference, pp. 3779-
3783, 1999.

[10] L. Ljung, System ldentification Theory for the
User, Prentice-Hall, 1999,

[11] J.-W. Seok, K.-S. Choi, J.-S. Lee, and S.-W. Cho,
“An improved new RLS algorithm with
forgetting factor of Erlang function for system
identification,” Journal of Control, Automation
and Systems Engineering, vol. 5, no. 4, pp. 394-
402, May 1999.

[12] I. L. Kosow, Electronic Machinery and
Transformers, Prentice-Hall, 1991.

Suhk-Hoon Suh received his B.S.,
M.S., and Ph.D. degrees in Electronic
Engineering from Dankook University
in 1990, 1992, and 2003, respectively.
His research interests include dynamic
system fault diagnosis, control network
application,  embedded  real-time
system, and motor control.



