DOI QR코드

DOI QR Code

Amorphous Lithium Lanthanum Titanate Solid Electrolyte Grown on LiCoO2 Cathode by Pulsed Laser Deposition for All-Solid-State Lithium Thin Film Microbattery

전고상 리튬 박막 전지 구현을 위해 펄스 레이저 증착법으로 LiCoO2 정극위에 성장시킨 비정질 (Li, La)TiO3고체 전해질의 특성

  • Published : 2004.08.01

Abstract

To make the all-solid-state lithium thin film battery having less than 1 fm in thickness, LiCoO$_2$ thin films were deposited on Pt/TiO$_2$/SiO$_2$/Si substrate as a function of Li/Co mole ratio and the deposition temperature by Pulsed Laser Deposition (PLD). Especially, LiCoO$_2$ thin films deposited at 50$0^{\circ}C$ with target of Li/Co=1.2 mole ratio show an initial discharge capacity of 53 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 67.6%. The microstructural and electrochemical properies of (Li, La)TiO3 thin films grown on LiCoO$_2$Pt/TiO$_2$/SiO$_2$/Si structures by Pulsed Laser Deposition (PLD) were investigated at various deposition temperatures. The thin films grown at 10$0^{\circ}C$ show an initial discharge capacity of approximately 51 $\mu$Ah/cm$^2$-$\mu$m and moreover show excellent discharge capacity retention of 90% after 100 cycles. An amorphous (Li, La)TiO$_3$ solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium thin film battery below 1 $\mu$m.

1 $\mu$m이하의 전고상 리튬 박막전지의 구현을 위해 펄스 레이저 증착법을 이용하여 Pt/TiO$_2$/SiO$_2$/Si 기판위에 LiCoO$_2$정극을 증착온도와 Li/Co 간의 몰 비율을 변화시켜가며 성장시켰다. 특히, Li/Co=1.2의 조성을 갖는 LiCoO$_2$를 50$0^{\circ}C$의 증착온도에서 성장시킬 경우 53 $\mu$Ah/$cm^2$-$\mu$m의 높은 초기 용량값을 가지며 100 싸이클 후에도 67.6%의 용량값을 유지하였다. LiCoO$_2$/Pt/TiO$_2$/SiO$_2$/Si위에 고체 전해질인 (Li, La)TiO$_3$를 비정질상으로 하여 PLD방법으로 낮은 온도대역에서 증착온도를 다양하게 하여 증착하였다. 10$0^{\circ}C$의 증착온도에서 LiCoO$_2$Pt/TiO$_2$/SiO$_2$/Si위에 성장시킨 (Li, La)TiO를 가지고 LiClO$_4$ in PC 안에서 Li anode와 충$.$방전 측정 결과 약 51$\mu$Ah/$cm^2$-$\mu$m의 초기 용량값을 나타내었으며 100싸이클 후에도 90%의 훌륭한 방전용량의 보존력을 나타내었다. 비정질상의 (Li, La)TiO$_3$ 고체 전해질은 전고상 박막전지로의 구현이 가능하다.

Keywords

References

  1. J. Kor. Elecrochem. Soc. v.6 no.4 LiCoO$_2$ Thin Film Deposited by Bias Sputtering Method 1. Electrochemical Characteristics (in Kor.) Y. J. Lee;H. Y. Park;W. I. Cho;B. W Cho;K. B. Kim https://doi.org/10.5229/JKES.2003.6.4.261
  2. J. Kor. Ceram. Soc. v.41 no.1 Structural and Electrochemical Characterization of LiCoO$_2$ Nano Cathode Powder Fabricated by Mechanochemical Process (in Kor) S. H. Choi;J. S. Kim;Y. S. Yoon https://doi.org/10.4191/KCERS.2004.41.1.086
  3. Solid State Ionics v.158 no.92 Structural and Electrochemical Properties of LiCoO$_2$ Prepared by Combustion Synthesis E. I. Santiago;A. V. C. Andrade;C. O. Paiva-Santos;L. O. S. Bulhoes https://doi.org/10.1016/S0167-2738(02)00765-8
  4. Mater. Chem. and Phys. v.68 Fabrication of LiCoO$_2$ Thin-Film Cathodes for Rechargeable Lithium Microbatteries C. Julien;M. A. Camacho-Lopez;L. Escobar-Alarcon;E. Haro-Poniatowski https://doi.org/10.1016/S0254-0584(00)00372-2
  5. J. Electrochemical Soc. v.149 no.12 Characterization of LiCoO$_2$ Thin Film Cathodes Deposited by Liquid-Delivery Metallorganic Chemical Vapor Deposition for Rechargeable Lithium Batteries S-I. Cho;S.-G. Yoon
  6. J. Power Sources v.125 Composite Polymer Electrolytes Reinforced by Non-Woven Fabrics M.-K. Song;Y-T. Kim;J.-Y Cho;B. W. Cho;B. N. Popov;H.-W. Rhee https://doi.org/10.1016/S0378-7753(03)00826-7
  7. Solid State Commun. v.86 no.10 High Ionic Conductivity in Lithium Lanthanum Titanate Y. Inaguma;C. Liquan;M. Itoh;T. Nakamura https://doi.org/10.1016/0038-1098(93)90841-A
  8. Solid State Ionics v.91 Mechanism of Ionic Conduction and Electrochemical Intercalation of Lithium Into the Perovskite Lanthanum Lithium Titanate O. Bohnke;C. Bohake;J. L. Fourquet https://doi.org/10.1016/S0167-2738(96)00434-1

Cited by

  1. 3D Structure of Electrode with Inorganic Solid Electrolyte vol.159, pp.8, 2012, https://doi.org/10.1149/2.072208jes