Rhamnolipid Production in Batch and Fed-batch Fermentation Using Pseudomonas aeruginosa BYK-2 KCTC 18012P

  • Lee, Kyung-Mi (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • Hwang, Sun-Hee (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • Ha, Soon-Duck (Pukyong National University, Sea Food & Marine Bioresources Development Cente) ;
  • Jang, Jae-Hyuk (Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japa) ;
  • Lim, Dong-Jung (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • Kong, Jai-Yul (Department of Biotechnology and Bioengineering, Pukyong National University)
  • Published : 2004.07.01

Abstract

The optimization of culture conditions for the bacterium Pseudomonas aeruginosa BYK-2 KCTC 18012P, was performed to increase its rhamnolipid production. The optimum level for carbon, nitrogen sources, temperature and pH, for rhamnolipid production in a flask, were identified as 25 g/L fish oil, 0.01% (w/v) urea, 25 and pH 7.0, respectively. Optimum conditions for batch culture, using a 7-L jar fermentor, were 200 rpm of agitation speed and a 2.0 L/min aeration rate. Under the optimum conditions, on fish oil for 216 h, the final cell and rhamnolipid concentrations were 5.3 g/L and 17.0 g/L respectively. Fed-batch fermentation, with different feeding conditions, was carried out in order to increase, cell growth and rhamnolipid production by the Pseudomonas aeruginosa, BYK-2 KCTC 18012P. When 2.5 g of fish oil and 100 mL basal salts medium, containing 0.01 % (w/v) urea, were fed intermittently during the fermentation, the final cell and rhamnolipid concentrations at 264 h, were 6.1 and 22.7 g/L respectively. The fed-batch culture resulted in a 1.2-fold increase in the dry cell mass and a 1.3-fold increase in rhamnolipid production, compared to the production of the batch culture. The rhamnolipid production-substrate conversion factor (0.75 g/g) was higher than that of the batch culture (0.68 g/g).

Keywords

References

  1. J. Sci. Indust. Res. v.46 Microbial surfactants: Evaluation, types, production and future applications Desai, J. D.
  2. Bio.Technology v.10 Surface-active compounds from microorganisms Georgiou, G.;S. C. Lin;M. M. Sharma https://doi.org/10.1038/nbt0192-60
  3. Inform v.4 Biosurfactants face increasing interest Ishigami, Y.
  4. Act Biotechnol. v.15 Characterization of biosurfactants and their use in pollution removal-state of the art: A review Banat, I. M. https://doi.org/10.1002/abio.370150302
  5. Enzyme Microb. Technol. v.16 MEOR: Improtance and mechanism of MEOR Khire, J. M.;M. I. Khan https://doi.org/10.1016/0141-0229(94)90081-7
  6. Biores. Tech. v.51 Biosurfactant production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review Banat, I. M. https://doi.org/10.1016/0960-8524(94)00101-6
  7. Trends Biotechnol. v.10 Biosurfactants: Moving towards industrial application Fiechter, A. https://doi.org/10.1016/0167-7799(92)90215-H
  8. Agric. Biol. Chem. v.35 Formation of rhamnolipid by Pseudomons aeruginosa and its function in hydrocarbon fermentation Hisatsuka, K.;T. Nakahara;N. Sano;K. Yamada https://doi.org/10.1271/bbb1961.35.686
  9. J. Am. Chem. Soc. v.71 A glyco-lipide produced by Pseudomonas aeruginosa Jarvis, F. G.;M. J. Johnson https://doi.org/10.1021/ja01180a073
  10. J. Bacteriol. v.68 Studies on the production of glycolipide by Pseudomonas aeruginosa Hauser, G.;M. L. Karnovsky https://doi.org/10.1002/path.1700680242
  11. J. Biol. Chem. v.224 Rhamnose and rhamnolipide biosynthesis by Pseudomonas aeruginosa Hauser, G.;M. L. Karnovsky
  12. J. Biol. Chem. v.233 Studies on the biosynthesis of L-rhamnose Hauser, G.;M. L. Karnovsky
  13. Appl. Microbiol. Biotechnol. v.54 Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications Maier, R. M.;G. Soberon-Chavez https://doi.org/10.1007/s002530000443
  14. Kor. J. Biotechnol. Bioeng. v.15 Isolation and characterization of oil degrading bacteria from southern sea of Korea Kim, H. J.;B. J. Kim;J. Y. Kong;H. S. Koo
  15. Ph.D. Dissertation. Pukyong National University Characterization of Biosurfactant Produced by Marine Bacterium Pseudomonas aeruginosa BYK-2 Kim, H. J.
  16. Appl. Environ. Microbiol. v.37 Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties Rosenberg, E.;A. Zuckerberg;C. Rubinovitz;D. L. Gutnick
  17. J. Biotechnol. v.173 Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants Koch, A. K.;O. Kappeli;A. Fiechter;J. Reiser
  18. Naturforscb. v.40 Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes Syldatk, C.;S. Lang;F. Wagner;V. Wraul;L. Witte
  19. Proceedings of the 3rd European Congress on Biotechnology v.1 Production of surface active anionic glycolipids by resting and immobilized microbial cells Wagner, F.;J. S. Kim;S. Lang;Z. Y. Li;G. Marwede;U. Matulovic;E. Ristau;C. Syldatk
  20. Microbiol. Mol. Review v.61 Microbial production of surfactants and their commercial potential Desai, J. D.;I. M. Banat
  21. Appl. Environ. Microbiol. v.48 Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source Guerra-Santo, L. H.;O. Kappeli;A. Fiechter
  22. J. Microbiol. Biotechnol. v.9 Control of both foam and dissolved oxygen in the presence of a surfactant for production of β-Carotene in Blakeslea trispora Kim, S. W.;I. Y. Lee;J. C. Jeong;J. H. Lee;Y. H. Park
  23. Biotechnol. Bioprocess Eng. v.7 Pilot scale production poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli Choi, J. I.;S. Y. Lee;K. S. Shin;W. G. Lee;S. J. Park;H. N. Chang;Y. K. Chang https://doi.org/10.1007/BF02933524
  24. Appl. Micriobiol. Biotechnol. v.51 Rhamnose lipids-biosynthesis, microbialproduction and application potential: Mini-review Lang, S.;D. Wullbrandt https://doi.org/10.1007/s002530051358
  25. Biotechnol. Bioeng. v.33 Microbially produced rhamnolipid as a source of rhamnose Linhardt, R. T.;R. Bakhit;L. Daniels;F. Mayerl;W. Pickenhagen https://doi.org/10.1002/bit.260330316
  26. J. Ind. Microbiol. v.8 Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1 Manresa, M. A.;J. Bastida;E. M. Mercade;M. Robert;J. de Andres;M. J. Espuny;J. Guinea https://doi.org/10.1007/BF01578765
  27. J. Am. Oil Chem. Soc. v.71 The use of agroindustrial by products for biosurfactant production Mercade, M. E.;M. A. Manresa https://doi.org/10.1007/BF02541473
  28. Biotechnol. Prog. v.18 Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials Rahman, K. S. M.;T. J. Rahman;S. McClean;R. Marchant;I. M. Banat https://doi.org/10.1021/bp020071x
  29. Appl. Environ. Microbiol. v.51 Pilot-Plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa Reiling, H. E.;U. Thanei-Wyss;L. H. Guerra-Santos;O. Kappeli;A. Fiechter
  30. Biotech-Forum. v.1 Biotenside-Neue Verfahren Zurmikrobiellen Herstellung grenzflachenaktiver, anionischer Glykolipide Syldatk, C.;U. Matulovic;F. Wagner
  31. Appl. Microbiol. Biotechnol. v.24 Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding Suzuki, T.;T. Yamane;S. Shimizu https://doi.org/10.1007/BF00294592
  32. Biotechnol. Bioprocess Eng. v.7 Software sensing for glucose concentration in industrial antibiotic fed-batch culture with controlled carbon/nitrogen feeding Suzuki, T.;T. Yamane;S. Shimizu https://doi.org/10.1007/BF02932836
  33. Biotechnol. Bioprocess Eng. v.8 Producton of recombinant hirudin in galacto-kinase-deficient Saccharomyces cerevisiae by fed-batch fermentation with continuous glucose feeding Ramisetti, S.;H. A. Kang;S. K. Rhee;C. H. Kim https://doi.org/10.1007/BF02935894