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FOUNDATIONS OF THE THEORY OF /; HOMOLOGY

HEESOOK PARK

ABSTRACT. In this paper, we provide the algebraic foundations to
the theory of relative £, homology. In particular, we prove that
£1 homology of topological spaces, both for the absolute case and
for the relative case, depends only on their fundamental groups.
We also provide a proof of Gromov’s Equivalence theorem for ¢,
homology, stated by Gromov without proof [4].

1. Introduction

The simplicial ¢; was introduced by M. Gromov and W. Thurston
in Thurston’s 1979 lecture notes: Geometry and topology of three-
manifolds. Then, on the basis of simplicial ¢; norm, Gromov [4] intro-
duced ¢; homology of topological spaces. He [4] also defined bounded
cohomology of topological spaces by taking the dual of the simplicial ¢;
norm.

Furthermore, Gromov [4] demonstrated the importance of both the
theory of £; homology and the theory of bounded cohomology by apply-
ing them to Riemannian geometry. He also proved a number of profound
theorems about them [4]. However, Gromov’s proofs in [4] are based on
a specific technique developed by him, which he called the theory of
simplicial multicomplexes, rather than on standard ideas of algebraic
topology.

R. Brooks [1] made a first step in understanding the theory of bounded
cohomology from the point of view of homological algebra. However,
Brooks’s approach did not let one precisely reconstruct the natural
seminorm on bounded cohomology groups. In [5] N. Ivanov improved
Brooks’s approach using a suitable version of relative homological al-
gebra, modified so that it takes into account a natural seminorm in
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the bounded cohomology. Afterwards, H. Park [8] extended Ivanov’s
approach to the theory of relative bounded cohomology.

The main purpose of this paper is to provide the algebraic foundation
and appropriate definitions for the relative ¢; homology, so that this
theory is well understood from a more conventional point of view.

We first approach the theory of absolute ¢; homology based on the
ideas of the relative homological algebra by modifying Ivanov’s approach
[5] to the theory of bounded cohomology. Then we extend this approach
to the relative case.

As in the case of the relative bounded cohomology in [8], we extend
the theory of the relative £; homology from the usual case of a pair of
spaces (X,Y) with ¥ C X to the more general case of any continu-
ous map Y — X of spaces X and Y (similarly, from a pair of groups
(G, A) to any homomorphism A — G). In this general case, the pairs
(X,Y) and (G, A) correspond to inclusions ¥ — X and A — G re-
spectively. This more general framework with continuous maps and
homomorphisms turns out to be necessary for comparing the relative ¢;
homology of spaces with the relative £, homology of groups.

Let X be a topological space. For every n > 0, we denote by Cp,(X)
the real n-dimensional chain group of X: a chain ¢ € Cp(X) is a finite
combination ), r;0; of singular n-simplices o; in X with real coefficients
r;. We define the simplicial ¢; norm on C,(X) by setting |lcf1 = >, |7i]-

Let C%(X) be the completion of C,(X) with respect to this norm,
that is,

Cf;l (X) = {Z 703
i=1

We have the chain complex

(e, ¢]
> Inil < oo}.
=1

<o OB (X) 2 B (X) 2 0P (X) 2 R (X) - 0

of Banach spaces and bounded operators, where the boundary opera-
tor 8, is defined by extending linearly the boundary operator on the
ordinary chain complex Ci(X) and has the norm ||0,|| < n+ 1. The
homology of this complex is called the ¢; homology of X and is denoted
by Ho(X).

Taking the dual Banach space of {C%(X), 0.}, we obtain a cochain
complex {B*(X),d.}. However, the complex {B™(X)} has its own in-
dependent description as the space of bounded real valued functions on
the set of singular n-simplices in X (see [4], [5]). The cohomology of
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the complex {B*(X)} is called the bounded cohomology of X and is
denoted by H*(X).

On H?(X) there is a natural seminorm || - ||; defined by ||[z]|; =
inf ||c[|; for a homology class [z] € H% (X), where the infimum is taken
over all cycles ¢ € C%(X) representing the homology class [z]. Notice
that the inclusions C,(X) < C%(X) induce a canonical map H.(X) —
H%(X), which is in general neither injective nor surjective.

Let us consider the relative case. For a continuous map of spaces ¢ :
Y — X, there is an induced chain map g, : {C%(Y), 0.} — {C¥(X),6.}.
Then the mapping cone {C%!(X) @Cf;’_l(Y),dn} is a complex, where
the boundary operators d, are defined by

dn(xna an-—l) = (anxn + Yn-1n-1, _8;1_1(1%—1)-

The n-th homology of this complex is called the n-th relative £1 homology
of X modulo Y and is denoted by H: (Y % X). We define the norm
Il on {CRH(X) € €,y (), dn} by setting

Iz, a)lly = l|zlly + llall:.

This norm induces a seminorm || - ||; on H& (Y % X).

There is a group-theoretic analogue of #; homology. We use the
standard bar resolution (see [2]). For a discrete group G, let C,(G)
be a free R-module generated by the n-tuples [g1] - - - |gn], where g; € G.
We define the ¢; norm || - ||; on Cp(G) by putting

1S gl gl = S Il

Let C£(G) be the norm completion of C,(G), that is,
n

CHH(G) = {Zm[gﬂ i) | Z | < oo} i
i=1 i=1

We have the chain complex
= C3(G) ™ G5(6) 2 CfH(G) PTH R~ 0

of Banach spaces and bounded operators, where the boundary operator
0, for every n > 2 is defined by

Fnlg] -~ -1gn] = [g2l - - - 19n]

n—1
+ > (=gl |gigiva| -~ |gn] + (=1)*ga] -+ lgn-1],
=1
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and has the norm ||8,|| £ n+1. The homology of this complex is called
the £1 homology of G and is denoted by H® (G).

For the relative case, we consider a homomorphism of groups p: A—
G. Using the standard bar resolutions, we define H (A %> G) as the
homology of the complex of mapping cone {C% (G) P Cz1 1(A),dp} [Def-
inition 3.3].

If we consider an inclusion map ¢: Y — X for Y C X, there is an
exact sequence

0— CA(Y) = Ci(X) - CIX)/C2(Y) — 0.

It is clear that {C%(X)/C%(Y)} is a complex. As in the ordinary case,
we define the relative £; homology groups H! (X,Y) as the homology
of the complex of {C#(X)/C%(Y)}. While our definition is different
from this ordinary case, the groups H(X,Y) and HA(Y — X) are
canonically isomorphic as vector spaces [Theorem 4.6]. Similarly, for a
pair of groups A C G, we define H% (G, A). Notice that for a pair of
spaces Y C X we can define H? (w1 X, mY) only when the inclusion
map Y — X induces an injective homomorphism 7Y — m X.

Using our definition, for any continuous map ¥ — X and the in-
duced homomorphism ®1Y — w1X, we can construct a homomorphism
between HA(Y % X) and HY (mY 25 m1X). Moreover, it turns out
that these two groups are in fact isometrically isomorphic [Theorem 4.4].
This supports the idea that our definition of the relative £; homology is
more natural.

Now we describe the content of this paper. In Section 2, we con-
struct a theory of £; homology of discrete groups. Amenable groups
[Definition 2.7] play a special role on the theory of ¢; homology. As a
main result, we prove that ¢; homology of amenable groups [Corollary
2.9] is zero. In Section 3, for a group homomorphism A %, G we de-
fine the relative #; homology of a group G modulo A and denote it by
H4(A % G)[Definition 3.3). We prove Gromov’s equivalence theorem
to the effect that the groups H!(G) and H (A % G) are isometrically
isomorphic if A is an amenable subgroup of G [Theorem 3.6]. In Section
4, for a continuous map ¢: Y — X of spaces we define the relative ¢;
homology of X modulo Y and denote it by Hf (Y % X) [Definition
4.2]. The main result of this section is that the relative £; homology of a
continuous map ¢: Y — X is isometrically isomorphic with the relative
¢, homology of the induced homomorphism ¢,: w1Y — 71X [Theorem
4.4].
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2. /1 homology of groups

Throughout this section, G denotes a discrete group. We dualize the
notion of relative injectivity in [5] to define £; homology of groups.

By a bounded left G module we mean a real Banach space V' together
with a left action of G on V such that ||g-v|] < |jv|| for all g € G
and v € V. We define a bounded right G-module similarly. We call
a bounded left G-module simply a G-module. The simplest important
example of G-module is R with the trivial action of G.

We introduce another important example of G-module for ¢; homol-
ogy. Using the bar notation (2], we consider C,(G) the free R-module
generated by the n-tuples [g1]g2| - - - |gn] With the G-action. Since the op-
eration on a basis with an element of g € G yields an element g[g1] - - - |gn]
in C,(G), we may describe C,(G) as the free R-module generated by
all g[g1]---|gn) so that an element of C,(G) can be written as a finite
sum of the form ) 7;gi[g;;| - - - |9i,| where r; € R, g; € G.

In particular, Cp(G) has one generator, denoted by [], so its element
is a finite sum of the form ) 7;¢;[]. We define the ¢; norm | - |1 on

Cn(G) by
Y ragilga] - lganllln =D Iral-
Let C4(G) be the norm completion of Cy,(G). Thus

CEHG) = {Zrigi[gill"'lginll Zlnl < oo}
i=1 =1

is a Banach space with the G-action such that ||g - c||1 < ||¢||1 for every
g € G, and c € C4(G). Hence C%(G) is a G-module.

DEFINITION 2.1. A surjective G-morphism of G-modules 7w: V — W
is said to be strongly projective if there exists a bounded linear operator
o: W — V such that moo = id and ||o|| < 1. Also a G-module U is said
to be relatively projective, if for any strongly projective G-morphism of
G-modules 7: V — W and any G-morphism of G-modules a: U — W
there exists a G-morphism 3: U — V such that o8 = e and (|8|| < ||«||
The definition is illustrated by the following diagram (2.1.1) :

U=—=1U

R

™

V — W
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LEMMA 2.1. Let U be a free R-module generated by {u;} with the
G-action. Suppose that the ¢ norm on U is defined by || Y i, rigiusll1 =
S°* . |ril, where r; € R and g; € G. Then the norm completion U%
of U is a relatively projective G-module. In particular, the G-modules
CY(G) are relatively projective for all n > 0.

Proof. Let w: V. — W be strongly projective G-morphism of G-
modules. We consider the situation pictured in diagram (2.1.1), in which
U = U*% and all the rest are given.

Forz = Y0, rigsu; € UY, we define (3 by the formula B(3°72, igius)
= > 2, rigioa(u;). It is easy to check that 78 = a and 8 commutes
with the action of G. Also we have

18()| = ||5(Z rigiui)|l1 = || anida(uz‘)lh
=1 =1

oo o9}
< Irillgilllollial <D 1 ri | llell = lllllel,
i==1 i=1

so that ||8]| < [le}. o
DEFINITION 2.2. A G-resolution of a G-module V
(2-2.1) oy By By o

is said to be strong if it is provided with a contracting homotopy, that
is, a sequence of linear operators

k. k ki k-1
~-4—V3<——2Vz<-—lV1<—OVO(——V

such that dok_1 = id, dpt+1kn + kn-1dn = id for n > 0, and such that
[lknll < 1. The resolution in (2.2.1) is said to be relatively projective if
all G-modules V,, are relatively projective.

We consider the sequence of G-modules and G-morphisms
21) = C5H(G) - CF(G) - CfH(G) - CFH(G) = R — 0,

where the boundary operator 8,: C%(G) — Cf;l_l(G) for every n > 1 is
defined by

Onlg1l - lgn] =(—=1)"g1g2| - - - |gn]
n—1
+ 3 (1" gl gsgisal -+ - 1gal + [g1] -+ lgn],
i=1

while ¢[] = 1 is a G-morphism &: C&}(GQ) — R.
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Also we define s_1: R — CSI(G) and s,: C2{G) — Cf;ﬁrl(G) by the
formulas respectively:

s-il=[] and  su(gloa]---1gal) = (=1)""*[glga| - -~ gn].
It is clear that the sequence in (2.1) is a strong relatively projective

G-resolution of the trivial G-module R.

DEFINITION 2.3. The sequence in (2.1) is called the bar resolution of
G.

DEFINITION 2.4. For any G-module V' the space of co-invariants of
V', denoted by Vi, is defined to be the quotient of V by the additive
submodule generated by the elements of the form gv — v for all g €
GandveV.

For a strong relatively projective G-resolution
o Vo=V —-R—0
of the trivial G-module R, it is easy to see that the induced sequence
(2.2) = (Va)e = (V)e — (Vo)e — 0

is a complex. Notice that the homology of this complex depends only
on G.

DEFINITION 2.5. The n-th homology group of the complex in (2.2)
is called the n-th £; homology group of G and is denoted by H% (G).

REMARK 2.1. It is proved that Hfl (G) = 0 for any group G (see [3],

[6])-

Remark that the homology of the complex in (2.2) has a natural semi-
norm which induces a topological vector space structure. Also remark
that this seminorm depends on the choice of a resolution.

DEFINITION 2.6. We define the canonical seminorm on HY(G) as
the supremum of the seminorms that arise from all strong relatively
projective G-resolutions of the trivial G-module R.

THEOREM 2.2. Let
Io A 1o A o /
LV, VSV S R0
— — — —

1) t1 tg t_q
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be a strong relatively projective G-resolution of trivial G-module R.
Then there exists a G-morphism of the bar resolution of G to this reso-
lution

—— i (G) 2 che) 2 che) —4— R 0
lfa lfz 1f1 lfo lidR l

extending idg and such that ||f,|| < 1 for every n > 0.
Proof. We define f,, by the formula

fn(glgr] - 1gn]) = (=1)"gtn—1(gitn—2(g2 - - - (gn-1to(gnt—1(1))---).

It is clear that f, commutes with the action of G. Since ||t.|| < 1 and
lg - x|}z < [[z]l1 for all g € G,z € Vi, we have |[f.| < 1.
Notice that €’ fo[] = 1 = ¢[]. It remains for us to verify that f,,0,41 =
0l 11 fnt1 for every n > 0. We prove this by induction on n. First notice

that we have fry1([g1]- - |gn+1]) = (=1)" 't (g1 fn(l92| - |gn+1])) and
also 8, , 1ty + tn_10;, = id. Now we assume f,_10, = &, f. Then

Oi1fori([ga] - [9ns1]) = B 1 (=)™ (talgr fullg2l - [gnta]))
= (=1)"*!(id — tn-18,) (91fn(lg2] - - |9n+1]))
= (=" 91 fllg2] - - gns1]) = (—1)" 010 (g1 Fn(lg2] -+ 19ns1)))
= (=)™ falgrlgzl - - - 1gna1]) + (-1)"tn-1(918, fu(lg2| - - - |gns1]))
= (=1)"" fu(a[g2] - - - 19n+1]) + (=1)"tn-1(g1 fn-10n([g2] - Ign1]))
= (1" fulgilgal - - lgn+1]) + (=1)tn_1{g1 fa1((=1)"g2lg3| - - - |gn1]

+ Z(—l)"ﬂ_i[gzl - |9:giva] - lgnga] + g2l - - l9nl) }

= ()™ fulgrlgel - gnial)
F D D" fullorlgel -+ lgigiral -+ lgns1]) + allgal 1)

= fnOni1([g1]- - - |gn41])-

Thus we have fr0n41 = 8, ) fat1- O

COROLLARY 2.3. On H%(G) the seminorm induced by the bar reso-
lution of G coincides with the canonical seminorm.
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Notice that, as in the ordinary homology of groups (see [2]), it is easy
to check that H% (G) is a covariant functor of G: given a group homo-
morphism ¢: G — H there is an induced homomorphism H,(p): H (G)
— HY(H) which depends only on . Also notice that || H(p)|| < 1.

Now we see the relationship between amenable groups and ¢; homol-
ogy. First we recall the definition of amenable groups. Let § be a set.
The space B(S) of all bounded functions on S is a Banach space with the
norm || f|| = sup{|f(z)] | z € S}. A linear functional m: B(S) — R
is called a mean if

inf{f(z) |z € S} <m(f) <sup{f(z) |z €S} forall fe B(S).

Let the group G act on S on the right. Then G acts on B(S) on the left
by the formula g - f(s) = f(s- g), where g € G, f € B(S), and s € S.
A mean m on B(S) is called right-invariant if m(g - f) = m(f) for all
g € G, f € B(S).

DEFINITION 2.7. Let the group G act on itself by the right translation.
If there is a right-invariant mean on B(G), then the group G is called
amenable.

As it is well known, finite groups, abelian groups, subgroups and the
homomorphic images of amenable groups are amenable.

Let A be an amenable subgroup of G. We consider G/A, the set of
(right) cosets Ag of A in G. Since the set of cosets Ag has the G-action
by right translation, we can define C“(G/A) as the same manner with
C%(G). Namely, we can take C’! (G/A) as the free R-module generated
by the n-tuples of the form [Ag;|---|Agn]. The action of a G-module is
given by the formula ¢'[Ag1|---|Agn] = Ag'[Ag1|---|Agn]. Notice that
the canonical map p,: C4(G) — CZ(G/A) is a G-morphism and has
the norm |jp,|| < 1.

LEMMA 2.4. Let A be an amenable subgroup of G. Then there exists
a G-morphism q;: C*(G/A) — CY(G) such that pyq1 = id and ||q1|| =
1.

Proof. Since A is amenable, there is a right-invariant mean m: B(A)
— R. On any coset Ag, as shown at the point (2.1) in [5], m defines
a mean mgy: B(Ag) — R by mgy(p) = m(f), where f(a) = ¢(ag). For
each z € GG, we consider the function 6;: G — R defined by d,(y) =
1if y =z, and 6(y) = 0 otherwise. We define ¢; by the formula

01(Ag'[Ag)) = Y mg(8s] 4,)9'[x]-
z€G
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Since 0 < 0,(ag) < 1, for a € A, we have 0 < mg(5z|Ag) <1 and also
(2.4.1)
S [mgBal 4g)] = 32 g6l ) = o (S bl ) = ma(Lag) = 1,
zeG zeG z€G

where 1 Ag is a constant function on Ag with value 1. Thus q; is well
defined and has the norm ||¢1|| = 1. It is easy to check that ¢; commutes
with the action of G. Finally, notice that

na([Ag)) = p1 (D mg(Sa|  )la]) = D mg(8z] 1) ([2])

z€eG z€G
= > myll] g pr(2]) = D my(bal 4,)[Ag]
z€Ag z€Ag
= (D mg(8a] 1)) [Ag] = [Ag],
zeG

where the last equality follows from (2.4.1). This shows p1q1 =4id. [
COROLLARY 2.5. Let A be an amenable subgroup of G. Then for
every n > 0 there exists a G-morphism ¢, : C2(G/A) — C&(G) such
that pngn = 1 and ||gu|| = 1, where p,: C&(G) — C4(G/A) is the
canonical map. :
Proof. Since the spaces Cgl (G) and Cgl (G/A) have only one basis

element denoted by [], we define gg by the formula go([]) = [].
Notice that (G/A)" = G"/A™ and A™ is an amenable subgroup of

G™. We may consider C4(G/A) as C(G"/A™) by setting up each
basis [Agy| - - |Agn] of C&(G/A) by
[Aga| -+ |Agn} = A™[(91; - -, 9n)]-

Then Lemma 2.4 provides a G"-morphism g, : C%(G/A) — C%(G) such
that p,g, = 1 and ||g,|| = 1. Especially, the G-module structure on
CH (@) (and similarly on C%(G/A)) is the restriction of the canonical
G™-module structure: glgi|---|gn] = (1,...,1,9){91] -+ |gn]. Hence p,
is a G-morphism. O

LEMMA 2.6. Let A be an amenable subgroup of G. Then C%(G/A)
is relatively projective G-module for every n > 0.

Proof. We consider the diagram
CiHG) —E— CR(G/A)

/] L

1%4 — %%
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where a G-morphism « and a strongly projective G-morphism 7 are
given. We need to construct a G-morphism §: C2(G/A) — V such
that 78 = « and ||8]] < |la|l. Since C(G) is a relatively projec-
tive G-module, there exists a G-morphism 3': C%(G) — V such that
ap = w3 and ||F] < |lap| < ||a||. Moreover, there is a G-morphism
q: C4(G/A) — C%(G) constructed in Corollary 2.5. We define 3 = §q.
Then n = mf'q = apqg = o and also [|B]] = [B'qll < [8llqll <
ledligll < [le]]. =

Now we introduce another important strong relatively projective G-
resolution. Let A be an amenable subgroup of G. From Lemma 2.6,
every C£1(G/A) is a relatively projective G-module and so the sequence
(2.3)

£y O3~ 02~ 01 o~ €

— G3'(G/A) = Gy (G/A) = C'(G/A) = Cp'(G/A) = R — 0
is a strong relatively projective G-resolution of the trivial G-module R,
where the boundary and contracting operators are defined by the same

formulas in the sequence (2.1). Notice that it induces the complex
(2.4)

- C3(G/A)c 2 G (G/A)e 2 CLH(G/A)e 2 G (G/A)e 0,
and the homology of which is H: (G).

ProPOSITION 2.7. Let A be an amenable subgroup of G. Then the
seminorm on H(G) induced by the resolution in (2.3) coincides with
the canonical seminorm.

Proof. Let || - [|1 denote the canonical seminorm on H?(G) and || - ||$
the seminorm on H% (G) induced by the resolution (2.3). By definition
of the canonical seminorm on H! (G), we have || - ||§ < || - ||1.-

From Corollary 2.5, there exists a G-morphism ¢,: C%(G/A) —
C%(G) such that ||gn|| = 1. Thus the seminorm induced by the resolu-

tion (2.3) is not less than the canonical seminorm and so || - |1 < || - |I5.
Hence || - [ = |- |I{- 0

THEOREM 2.8. Let A be an amenable normal subgroup of G. Then
the map H,(p): HO(G) — HY(G/A) induced by the canonical map
¢: G — G/A is an isometric isomorphism, that is, the isomorphism
preserves the canonical seminorm.

Proof. Notice that the sequence (2.3) is the bar resolution of G/A.
So it induces the complex {C%(G/A)q /A}, and the homology of which is
H%(G/A). Also the induced norm on H (G/A) by the resolution (2.3)
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is the canonical one. Remark that C&(G/A)g = C&(G/A)gja. Thus
H,(p) is an isomorphism. It follows from Proposition 2.7 that H,(yp) is
an isometry. 0

COROLLARY 2.9. If G is amenable, then the group H%(G) is zero.

We denote the coset A in A by {A}. Let A be an amenable group.
By setting A = G in sequence (2.4), we have a complex
(2.5)

Leh(Aana B chapa 2 b apa L e (ana B

The homology of the complex in (2.5) is H¢(A) and the induced semi-
norm is the canonical one. Remark that the boundary operators in the
complex (2.5) are in fact given by

(2.6)

5 = id if n is even,
" 10 ifnisodd.

This also proves that ¢; homology of an amenable group is zero.

3. Relative ¢/; homology of groups

Let ¢: A — G be a group homomorphism. Recall that there is an
induced homomorphism H,(yp): H# (A) — H%(G) which depends only
on ¢. Also [|Hi(p)|| < 1.

DEFINITION 3.1. Let ¢: A — G be a group homomorphism. A strong
relatively projective G-resolution of a G-module U
RNCCRY ANy AN s AN § N
— — — —
ko k1 kg k_1
and a strong relatively projective A-resolution of an A-module U
6, / 6, /
BBy Ay AU
— — — —
to ty tg t_q
are called a co-allowable pair of resolutions for (G, A;U) if idy can be
extended to an A-morphism of resolutions ¢, : V, — U, such that ¢,
commutes with the contracting homotopies k, and t,, for every n > 0.

PROPOSITION 3.1. Let ¢: A — G be a group homomorphism. The
bar resolutions of G and A are a co-allowable pair of resolutions for

(G, 4;R).



Foundations of the theory of £; homology 603

Proof. Recall that the bar resolutions of G and A are strong relatively
projective. We define a map ¢, : C4(A) — C%(G) by the formula
on([ar]---lan]) = [p(a1)] - - [v(an)].
It is easy to check ., is an A-morphism commuting with contracting
homotopies. O

DEFINITION 3.2. Let ¢: A — G be a group homomorphism. Let
= U - Upjy—R—0 and - - >V -V —-R -0

be the G- and A-resolutions respectively such that they are a co-allowable
pair for (G, A;R). The mapping cone and mapping cylinder of chain
complexes induced by ¢, respectively, are defined as follows:

Cn(A 5 G) = (Un)oc P(Va-1)a
ECh(A % G) = (Vi) AP Un)e P (Va1)a,

where the boundary operators on C,,(4 % G) and on EC,,(A % G) are
defined by the following formulas respectively
dn(xna an—l) = (8nmn + On-10n—1, ;a;—lan—l)

/ /
dn(a'na In, an—l) = (ana'n — Qp—1, Onp + Pn—-10n—1, _an_lan—1)~

It is easy to check that the mapping cone {C.(4 % G),d.} and the
mapping cylinder {EC,(A % G),d,} are complexes.

DEFINITION 3.3. The n-th homology of the complex {Cy(4 % @), d,}
is called the n-th relative £; homology of G modulo A and is denoted by
H4(A % @). The n-th homology of the complex {EC.(A %> G),d,} is
denoted by H2 (EC(A % @)).

We define the norm || ||; on Cp(A 5 @) (similarly on ECr(4 5 @)
by
[(@n, an-1)ll1 = llznlls + llan-11.
Notice that these norms define the seminorms || - ||; on H2 (A % G) and
on HO(EC(A % @)), respectively. Furthermore, for every w > 0 we
define a norm || - [|1(w) on Cn(A % G) by

1(@n, an-1)ll1(w) = llZall1 + (1 + w)llan-1]1.

Then we have the corresponding seminorm | - ||;(w) on H&(A % G).

Finally, we define these norms || - ||1(w) on H&(A % G) for all w in
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the closed interval [0,00] by passing w to the limits. Notice that, for
0 < w1 < wy, we have

[ =1-11200) < - [liwr) < I [l {wa).
THEOREM 3.2. Let ¢: A — G be a group homomorphism. Then
the inclusion map pn: C&(G)g — CE(A) A D CL(G)c P CE (A )A in-

duces an isometric isomorphism Hy(p): H2(G) — HA(EC(A % @)
with respect to the norm || - ||1.

Proof. We consider the exact sequence
0— CH(G)e
25 BCh(A S G) = CE(A)aP i@ P Crit
— CEA) AP Cri(A)a— 0.

It is easy to check that C4(A)a@ C% (A)a is a complex, and the

homology of which is zero. Thus H%(G) and H&(EC(A % G)) are
isomorphic. For simplicity, we denote every boundary operator by the
same notation d. We consider the diagram

CL(G)e —2— CLAAPCHEG)cPCL (AHa —— C2(G)c

d ] |

Ch (G)e 2225 O (A)aP C (R POl (A) 4 2= CL (G,

n

where pn(a,z,b) = 2 4 pnpa and p,: C&(A)4 — CL(G)g is an induced
homomorphism by . It is clear that p,p, = id and that the first square
is commutative. Also it is easy to check that p, is a chain map. Since
we have [|pn(2)|l1 = ||(0,2,0)||1 = ||=]l1, the map Hy(p) has the norm
[|Hn(p)|| < 1. Also notice that

In(a, 2, b)ll1 = ll& + Analls < [lzll2 + flafs
< lally + llzlls + 18l = ll(a, 2, b)[l1,

so that P, has the norm ||p,|| < 1. This shows that (H,(p))~! has
the norm ||(H,(p))7!|| < 1. Hence the isomorphism H,(p) is also an
isometry. =

Let ¢: A — G be a group homomorphism. Let the sequences

U -»Up-»R—-0 and >V —-R—-0
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be a co-allowable pair of resolutions for (G, A;R). Then there is an
exact sequence
0— (Va2 ECo(A 5 G) 2 (A S G) — 0,
where ¢, and p,, are natural injective and projective maps respectively.
Also this sequence induces a long exact sequence
o H (A) — B (G) — H (A D G) — HiLy(A) — -+

Remark that, by Theorem 3.2, the seminorm on HY (EC(A % G))
induced by the bar resolutions coincides with the canonical one. Also

remark that a seminorm on H? (A % G) depends on the choice of a co-
allowable pair of resolutions for (G, A;R). As on HY(G), we define the

canonical seminorm on H! (A 2, G) by the supremum of the seminorms
which arise from all co-allowable pairs of resolutions for (G, 4;R).

THEOREM 3.3. The seminorm || - ||;(w) on H (A % @) induced by
the bar resolutions of G and A coincides with the canonical seminorm
for every w € [0, 0.

Proof. Let

o= U; —-Uy—» R—-0 and ---—-> Vi >V —-R -0
be a co-allowable pair for (G, A; R) with an A-morphism ¢,: V, — U,
as in Definition 3.2. Let oy, : C&(G)g — (Un)g and vy,_1: CL (A)4 —
(Vn—1)4 be defined by the same formula in Theorem 2.2. We define a
map

/Bn: C’el @031 A — (U ) @(Vn—l)A

by the formula 3,(z,a) = (anz, yn—1a). It is easy to check that 3, is a
chain map. Also, for every w > 0

1Bn(z; a)ll1(w) = [(anz, m-10)lh(w) = [enzll + (1 + w)[yn-1all
< lzlly + (1 +w)lally = [z, a)fl1(w)
So B« has the norm ||3,|| < 1 with respect to the norm || - ||1 (w). O

LEMMA 3.4. Let A be an amenable subgroup of G. Then the se-

quences
(34. 1)

4G/Aa) & chera) B ch(G/a) 2 chGra) SR -0
(3.4.2)
({A}) Cll({A}) Cel ((4ap & Ce'({A}) SR -0
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are a co-allowable pair of resolutions for (G, A; R).
Proof. We define ,,: C%({A}) — CY(G/A) by
Aa([{A}---{A}]) = [A]---|4].

[ .

n n

We omit the rest of the proof. a

THEOREM 3.5. Let A be an amenable subgroup of G, and let p: A —

G be an inclusion map. Then the seminorm || - ||1(w) on HA (A % @)
induced by the complex

Co(A % G) = CI(G/A)c P il ({A))a
coincides with the canonical seminorm for every w € [0, 0].

Proof. Let || - ||1(w) denote the canonical seminorm on Hf1 (4 % @)
and let ||| (w) the seminorm on it induced by the complex C,,(4 > @).
By definition of the canonical seminorm, we have ||-||{(w) < ||-|l1(w). By
Theorem 3.3, the canonical seminorm on H (A ¥ G) coincides with
the seminorm induced by the complex C4 (G)e @ C* ,(A) 4. We define

Bn: CE(G/A)c P Ci1({ADa — CH (G P Crt 1 (A)a

by the formula £,(x,a) = (gnx, ¢,_1a), where g, (similarly ¢}) is the
map defined in Corollary 2.5. It is clear that (3, is a chain map. Also it
is easy to check that ||8,]| < 1 for the norm || - ||1(w). Thus || - |1 (w) <

IR HOE 0

From now on, we always distinguish a homology class from a chain
by using brackets: for example, [z] stands for a homology class while z
stands for a cycle.

THEOREM 3.6. Let A be an amenable subgroup of G and let ¢: A <
G be an inclusion homomorphism. Then, for every n > 2, the groups
H4(G) and H2(A % G) are isometrically isomorphic with respect to
the norm || - |1.

Proof. Tt is enough for us to consider the sequences {C%(G/A),d,}
and {C%({A}),0.} in Lemma 3.4. So we have complexes

Cn(A S G) = CLHG/A)cED CEL({AD)a and
ECy(A% G)=Ch({ANAP CL(G/Ac P Cit1({AY)a
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Then the exact sequence
0— Cri({A})a = ECu(A % @) 25 Cu(A 5 G) 0
induces a long exact sequence

o HE(A) - HY(G) 22 g4 £ 6) - HE (A) - -
Since H!'(A) = 0, the groups H. (A £ G) and H%(G) are isomorphic.
Remark that the induced map ¢,,: C& ({A})a — C4(G/A)¢g is defined
as an inclusion map. Since it is clear that H,(p) has the norm ||H,(p)| <
1, we show H,(p)~! has the norm |H,(p)7!|| < 1. Let (b, z,a) €

EC,(A% @) be a cycle. By definition of boundary operator, we have
Ab—a=0, Opxr+a=0, and 8),_ja=0.

Recall that 9/, = id if n is even and 8], = 0 if n is odd (see the formula

(2.6)).
Let n be even: 8/, =4d and 8],_| = 0. Then a € ker(d/,_,) = Im(9},).

So there is an element ¢ € C% ({A}) 4 such that 8/,c = a and ||c|l; = ||al|;.
Notice that d(0,  + ¢, 0) = (0, Oz + dl,c, 0) = (0, 0, 0), and also
(0, z +¢, 0) +d(0, 0, —¢) = (c, z, Oc) = (b, z, a).

Thus (H,(p))~*([z, a]) is represented by a cycle (0, z+c¢, 0) € EC,(A %
G). Also

I(Ha(@)™ (2, aDlls < 10, 2 +¢, )]l = Iz + ]l
< lzfly + llelly = Nzl + lall = lI(z, @)z

This shows that ||(H,(p)) || <1 for every even n.
Similarly, we can prove that ||(H,(p))~!|| < 1 for every odd n. [

Now we prove Gromov’s equivalence theorem for a case of groups
with respect to the norms || - ||1(w).

THEOREM 3.7. Let ¢: A — G be a group homomorphism. If A is

amenable, then for every n > 2 the norms || - ||1(w) on H:2 (A % G) are
equal for all w € [0, 0o].

Proof. Let w > 0. Recall that |- ||y = ||-[}2(0) < ||-]]1(w). So we prove
that || - [l1(w) < || - 1. Let (z,0) € CL(Q)gPCE (A)a be a cycle.
Then 0 = d(z,a) = (Onx + pn—_1a, —0,_;a) and so d/,_,a = 0, where

¢n: CL(A)s — C4(G)g is an induced map from ¢, and 8,, and &/, are
the boundary operators on C (G)¢g and C% (A) 4 respectively. Since A
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is amenable, we may define the boundary operator 9, by the formula in
(2.6).

Let n — 1 be even: 8/,_; = td. Then 8;,_;a =0 gives a = 0. Thus
Iz, )1 (w) = llzlls + (1 + w)llall = &y = lzlls + llalls = [i(z, @)1
If n —1is odd: &, = id and 8),_ja = 0. Then a € ker(d},_,) = Im(3,,).
So there is an element a,, € C4(A)4 such that 8,a, = a and |an|1 =

|0Lan]l1 = |la|l1- Then we have

(:L'a a) + d(O, an) = (:c,a) + (‘Pnana _(%lan) = (CL‘ + Pnan, 0)-
So we have
[z, alll1(w) < (2 + @nan, 0)[l1(w) = ||z + @nan1 < [[zll1 + [lenanl
< lzlls + llanlls = llzlls + llalls = [(z, a)ll1-

Thus we have ||[z, a]||1(w) < ||[, a]|l1 for every w > 0. By passing to
the limits, we have ||[z, a]||1(w) < ||[z, a]|l1 for all w € [0, co]. O

In the rest of this section, A is a subgroup of G and ¢: A — G is
an inclusion homomorphism. We describe the relative £; homology of G
modulo A from the point of view of the ordinary relative case.

DEFINITION 3.4. Let
- U;-»Up—R—-0 and --- = V1 -V —-R—-0

be a co-allowable pair for (G, A; R) with an A-morphism ¢,: V,, — U,
as in Definition 3.1. If ¢, induces an injective map ¢y (Va)a — (Urn)a,
then this pair of resolutions together with the A-morphisms ¢, is said
to be co-proper.

PROPOSITION 3.8. The bar resolutions of G and A are co-proper.

Proof. Tt is clear that the inclusion homomorphism A — G induces an
injective A-morphism C¢(A) — C4(G) which is clearly injective. It is
easy to check that the induced map C# (A)4 — C%(G)¢ is injective. O

Let a pair of resolutions
o= U»Up—»R—-0 and --- >V = V=R -0
be co-proper as in Definition 3.4. Remark that there is an exact sequence
(3.1) 0= (Va)a = (Un)g = (Un)g/(Va)a — 0.
It is easy to check that the induced sequence
(3.2) oo (Ua)a/(Va)a = (U)e/(Vi)a — (Uo)a/ (Vo)a — O
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is a complex. The n-th homology of the complex (3.2) is denoted by
HY(G, A). The sequence (3.1) induces an exact sequence
(3.3)

— Hy'y (G, A) = Hi(A) — H(G) — H} (G, A) — H,L(4) =

Notice that the bar resolutions of G and A induces an exact sequence
(3.4) 0 — Ch(A)a 2 CH(G)e &5 CU(G)e/CH (A)a — 0.

We denote the quotient space C’fl(G)G/Cfl (A)a by C(G,A). Thus
there is a complex

(3.5) = CR(G, A) - CH (G, A) - CH (G, A) — 0.

By following Gromov’s definition [4] of a norm || - |[1(8) on the relative
¢; homology of a pair of spaces (X,Y) with Y C X for 6 € [0, 0], we
define a norm || - [|1(8) on H! (G, A): first we define a norm || - ||1(4) on
CY(G)¢ by putting

lzll1(8) = llzlly + 6]|0z]1.

Then, using the quotient homomorphism p.: C8(G)g¢ — CH(G,A),
we define the norm ||&]|;(#) of ¢ € C!1(G, A) as the quotient norm, so
that ||&|[1 () = inf ||c||1(6), where the infimum is taken over ¢ € p;1(¢) C
C%(G)¢. Then there is a corresponding seminorm ||-||1(8) on H!! (G, A).
By passing 6 to the limits, we define || - ||1(8) on H! (G, A) for all 8 ¢
[0, o).

THEOREM 3.9. There is an isomorphism
Ho(8): H2 (A% G) — HE(G, A)

which carries the canonical seminorm || - ||y (w) on H (A % G) to the
seminorm || - ||1(8) on HE(G,A) for w = 8 € [0,00] as follows: for
[z,a] € HA(A S @),

I, a]ll1(w) < 1 Hn(B)([z,a])[11(6) < [z, a]ll1(w)-

n+2
Proof. We consider the following complexes
Cn(A5 G)=CL(G)cEPCry(A
EC,(A% G)=Cl(A)aPClG)e @C“
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Also we consider the following diagram

0— Ch(A)4 —2— ECL (A% G) -2 C(AL @) -0

- | Y
0— Cﬁl (A)a — Cﬁl (G)e —A Crt;l (G,4) — 0,
where y,(a)) = d', on(d/,z,a) = z, and Bu(z,a) = z + C2(A)a. Tt

is clear that the diagram is commutative. It induces the commutative
diagram

= Hi}(4) —— H}{(G) — H (A5 G) —— Hyy(4) -
Hat) | Ho) | Ha8)| Hama () |
— H(A) —— HS(G) —— HH(G,A) —— H (A)—.
Remark that H,(y) and H,(a) are isometric isomorphisms. So Hy(5)
is an isomorphism.
Let w =60 > 0. Let (z,0) € C& (G)GQBC,?_I(A)A be a cycle. Then
d(z,a) = (0x + a, —9'a) =0 and 0z = —a. Thus
18n(2,)l11(6) = llz + C* (A)all1(6) < llzl12(6) = ||z|l1 + 6]|0z|)1
<zl + (1 +w)llalls = [[(; @)1 (w)-
On the other hand, let z € C%(G)g be a relative cycle so that 9z €
C% (A)a. Then (z, —3z) € CLH(Q)e B CH (A4 and d(z, —0x) =
(0x — Oz, &0x) = (0,0). It is easy to check that (H(B3))[z] is
represented by a cycle (z, —9x). Also
(@, =Onz)[l1(w) = llzlls + (1 + W)[|8nz(lr = llzll1 + [|Gnzll1 + wliGnzlly
< (n+2)|lzlli + wlOnzlls < (n + 2)(lizll1 + 0] 0nzl2)
= (n+2)||z[|1(6).
Hence we have 75| - [l1(w) < [|1Ha(B)()I12(8) < - 1 (w). O

4. Relative ¢; homology of spaces

In this section every space is a connécted countable cellular space.
Recall that ¢; homology of a space X, denoted by H(X), is the
homology of the complex of Banach spaces

1) - chx) B oh(x) 2 ch(x) & chi(X) —o.
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In [6] Matsumoto and Morita stated that it is plausible that Hf (X)
depends only on its fundamental group m1X. In the next theorem, we
prove that the H1 (X) does depend only on its fundamental group 71 X.

THEOREM 4.1. The group H!!(m1X) is canonically isomorphic with
H%(X). This isomorphism carries the canonical seminorm on H? (m1.X)
to the seminorm on H! (X).

Proof. Let : X - X be the universal covering of X, so that m X
acts freely on X and X /m1X = X. The action of m1.X on X induces
the action on C%(X) and thus turns them into bounded 7r; X-modules.
We show that these 7wy X-modules are relatively projective. Let X() cX
consist one element from each m;X-orbit. As it is well known, the
complex C,(X) is free on all simplexes the first vertices of which are
in Xg. Then, by Lemma 2.1, these 71 X-modules C& ()Z' ) are relatively
projective. We consider the sequence

(4.1.1) oo CH(X) - OO (X) - CB(X) - R — 0.

Since X is simply connected, H?' (X) = 0 and so the sequence in (4.1.1)
is exact. Thus the sequence (4.1.1) is a strong relatively projective w1 X-
resolution of the trivial w1 X-module R, where the fact that this resolu-
tion is strong is shown in the proof of Theorem 2.4 in [5]. Note that the
map m,: Cf(X) — C%(X) establishes an isometric isomorphism be-
tween (C4 (X ))ﬂ_1 x and C(X) and it commutes with the boundary
operators. Thus, as topological vector spaces, the £; homology group of
71X coincides with the homology of the complex

— Cél(X) — Cfl(X) — Cgl(X) — 0.

Now we prove that the isomorphism constructed between H4 (m1X)
and H?(X) is an isometry. Let || - |1 denote the canonical seminorm
on HA(m1X) and || - }|§ the seminorm on HY (X). By definition of the
canonical seminorm, we have || - |1 > || - ||3, so that it remains for us
to prove that || - |3 < || - |I§. Since the canonical seminorm is achieved
by the bar resolution, it suffices to construct a w;X-morphism of the
resolution (4.1.1) into the bar resolution of 71X consisting of maps of
norm < 1. _

Let 0: A, — X be a singular n-simplex the first vertex of which
is in Xy, where A, = [vg,...,vn]. We define a map fr: CHX) —
C4 (w1 X) by fn(o) = golg1lg2|---|gn], where g; € m1X such that
o(vi) = g; - - goXo. It is easy to see that f,, commutes with the boundary



612 HeeSook Park

- operators and so it determines a 71 X-morphism of the resolutions

— X) — CiX) R 0
l lfl lfo lidn
— Ch(mX) —— C’gl(‘n'lX) » R 0
ﬁxt”ending idr. By definition, it is clear that ||fi|| < 1 and so |- [}1 <
1. O

COROLLARY 4.2. Let a: X3 — X5 be a continuous map such that
the induced homomorphism . : m1(X1) — m1(X2) is a surjection with
an amenable kernel. Then the homomorphism Hy(a): H(X1) —

H%(X5) is an isometric isomorphism with respect to the norm || - ||;
for every n > 0.
Proof. This follows from Theorem 2.8 and Theorem 4.1. O

Now we define relative £; homology of spaces.

DEFINITION 4.1. Let ¢: Y — X be a continuous map of spaces. The
mapping cone and the mapping cylinder of the chain complexes induced
by ¢ are defined as follows:

CuY & X)=ClHX)EP Cri (Y
EC,(Y % X) = Cl(Y)P Ci(X) @cﬁ (Y),

where the boundary operators on Cp(Y % X) and on EC,(Y % X)
are defined by the same formulas in Definition 3.2.

Notice that there are complexes
42) By EBarLX)L Yy LX) -0
43) - L ECY & X) % EC(Y S X) I EC(Y 5 X) —o.

DEFINITION 4.2. The n-th homology of the complex in (4.2) is called
the n-th relative €1 homology of X modulo Y and is denoted by
HY(Y #, X). We denote the n-th homology of the complex in (4.3) by

HE(EC(Y % X)).

We define the norm ||-||; on C4(Y % X) (similarly on EC\(Y Z X))
by
Iz, a)llx = llzfl1 + llalh-



Foundations of the theory of £1 homology 613

Also for every w > 0, we define a norm || - ||1(w) on C.(Y % X) by
Iz, a)ll1(w) = llzll + (1 +w)llall-

There is the corresponding seminorm | - [|1(w) on HA(Y % X). We
define these norms || - |[1(w) on HA(Y % X) for all w € [0,00] by
passing w to the limits.

THEOREM 4.3. Let ¢: Y — X be a continuous map. Then the nat-
ural inclusion map py: C2(X) — EC,(Y ?, X) induces an isometric
isomorphism Hy,(p): Ho(X) — HY(EC(Y %, X)) with respect to the
norm || - ||1.

We can prove Theorem 4.3 by the same method as the proof of The-
orem 3.2.

Notice that there is an exact sequence
0 CLY) > EC,(Y & X) - Cu(Y & X) — 0.
It induces a long exact sequence
o HO(Y) = HE(X) = HE(Y > X) = L, (Y) = -

THEOREM 4.4. Let ¢: Y — X be a continuous map and p.: w1Y —
71X be an induced map. Then HY(mY %% = X) and HO(Y %
X) are isometrically isomorphic. This isomorphism carries the canon-
ical seminorm || - ||l1(w) on Hi(mY %5 m1X) to the seminorm on
HA(Y £ X) for every w € [0, 00].

Proof. Let G and A denote 71X and 1Y respectively. By Theorem
3.3, the canonical seminorm on H%: (A 2, G) is induced by the complex
Cn(A 25 G) = CE(G)a B Oy

Let 7y : X — X and T Y >Y be the universal coverings. As shown
in Theorem 4.1, we can identify

CEX) P i (¥) = (CR X))y x D(Cri () -
By Theorem 2.2 and Theorem 4.1, there are chain maps
CH(G)g 2 (CB(X)),.x and  CH(A)a 25 (CH(Y)),,y-
Cn m

We define the maps
CE O D 1A 22 (X)) 1 DT oy

‘I’n
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by @, (u,v) = (ant, Yn—1v) and ¥, (v, v") = ((uu/, Np—1v'). It is easy to
check that ®,, and ¥,, are chain maps such that ¥, ®,, is chain homotopic
to id. Also it is easy to check that ||®,| < 1 and ||¥,| < 1 with respect
to the norm || - |1 (w) for every w € [0, o0]. O

COROLLARY 4.5. Let ¢: Y — X be a continuous map of spaces such
that the fundamental group m1Y is amenable. Then the norms || - ||; (w)

on Ho (Y % X)) are equal for every w € [0,00] and for every n > 2.
Proof. It follows from Theorem 4.4 and Theorem 3.7. O

Let Y and Y C X be a pair of spaces and let ¢: Y — X be a nat-
ural inclusion map. As in the ordinary relative homology, the injective
homomorphism i,: C5(Y) — C%(X) induces an exact sequence

(4.4) 0— CA(Y) = ChX) - Ca(X)/Ch(Y) — 0.

We denote C4(X)/C4(Y) by C4(X,Y). Notice that there is a com-
plex

(4.5) o CR(X,Y) - CE{X,Y) = CH(X,Y) = 0.

The n-th homology of the complex in (4.5) is denoted by H%(X,Y).
The exact sequence (4.4) induces a long exact sequence

— HY (X,Y) — HA(Y) —» HO(X) —» HA(X,Y) — H2 (V) —

For every 6 € [0, o], we define a seminorm ||-||1() on H4(X,Y) by the
same formula as we defined on H (G, A).

THEOREM 4.6. There is an isomorphism

H.(8): Ho (Y % X) - HA(X,Y)

which carries the canonical seminorm || - [|(w) on H2(Y % X) to the
seminorm || - [|1(8) on H2(X,Y) for w = 6 € [0,00] as follows: for
[z,a] € HR (Y % X)

1

ol allliw) < 1Ha(6) ([, aDl1(8) < iz, alll1(w)-

The proof of Theorem 4.6 is referred to Theorem 3.9.
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