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ON OPERATORS WITH AN
ABSOLUTE VALUE CONDITION

IN Ho JeEon* AND B. P. DuGGAL

ABSTRACT. Let 2 denote the class of bounded linear Hilbert space
operators with the property that |42] > |A|2. In this paper we
show that A-operators are finitely ascensive and that, for non-zero
operators A and B, A® B is in 2 if and only if A and B are in
2. Also, it is shown that if A is an operator such that p(A) is in
2 for a non-trivial polynomial p, then Weyl’s theorem holds for
f(A), where f is a function analytic on an open neighborhood of
the spectrum of A.

1. Introduction

Let H be a Hilbert space, and let B(H) denote the algebra of bounded
linear operators on H. Recall ([1]) that an operator A is p-hyponormal,
0 < p <1, if |A*|?? < |A|*. Evidently, 1-hyponormality is hyponormal-
ity. Let H(p) denote the class of p-hyponormal operators. H(%) opera-
tors were first introduced by Xia (see [29]). The class of H(p) operators,
though strictly larger than the class of hyponormal operators ([5], [9],
[29]), shares a large number of properties with hyponormal operators
(see [1], [3], [7], [8]). We say that an operator A € B(H) is paranormal
if A satisfies the norm condition ||A%z|||z||| > ||Az||? for all z € H. An
operator A € B(H) is said to be normaloid if {|A|| = sup{|\|: A € 0(A)}.
It is well known that a p-hyponormal operator A4 is paranormal and that
a paranormal operator is normaloid.

Recently, Furuta-Ito-Yamazaki ([10]) have defined the following very
interesting class of Hilbert space operators.
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DEFINITION 1-1. The operator A € B(H) is said to belong to Class
A if A satisfies an absolute value condition |A?| > |A|.

In the following we denote “Class A” by simply 2. In [10], it is shown
that 2 stands in the middle of classes of p-hyponormal and paranormal
operators. More explicitly, we have the following inclusions:

{hyponormal operators} C {p-hyponormal operators}
C { A — operators}
C {paranormal operators}

C {normaloid operators}.

It is well known that all of these inclusions may be proper (for details, see
[9]). Ito ([16]) has shown that there are some parallelisms between abso-
lute value conditions of A-operators and norm conditions of paranormal
operators. Uchiyama ([26]) proved basic properties of A-operators and
that Weyl’s theorem holds for 2l-operators.

Recall ([17], [18]) that the operator A € B(H) is said to be finitely
ascensive if for every X\ € C there is a p € N such that

ker(A — \)P = ker(A — \)P*1,

The class of finitely ascensive operators is considerably large and plays
a significant role in the study of local spectral theory (see [1§], [20]). In
section 2 we study basic properties of A-operators, which would make
more explicit the relationship between the theory of 2A-operators and
of paranormal operators. In particular, we prove that 2-operators are
finitely ascensive.

Given non-zero A, B € B(H), let A ® B denote the tensor product
on the product space H ® H. The operation of taking tensor products
A ® B preserves many properties of A,B € B(H), but by no means
all of them. Thus, whereas the normaloid property is invariant under
tensor products, the spectraloid property is not (see [24, pp. 623 and
631]); again, whereas A ® B is normal if and only if A and B are ([14],
[25]), there exist paranormal operators A and B such that A® B is not
paranormal ([2]). In section 3, for non-zero A, B € B(H) it is shown
that A® B € 2 if and only if A, B € A, which extends an analogous
result on p-hyponormal operators in [7].

Recall ([12]) that an operator A € B(H) is called Fredholm if it has
closed range and finite dimensional null space and its range is of finite
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co-dimension. The indez of a Fredholm operator A € B(H) is given by
ind (A) = dimker(A) — dim ker(A").

An operator A € B(H) is called Weyl if it is Fredholm of index zero.
The Weyl spectrum w(A) of A is defined by

w(A)={A € C: A— A is not Weyl}.

We write 7o (A) for the set of eigenvalues of A and mgg(A) for the isolated
points of o(A) which are eigenvalues of finite multiplicity. We say that
Weyl’s theorem holds for A € B(H) if there is the equality

O'(A) \W(A) = 7T00(A).

DEFINITION 1-2. An operator A € B(H) is said to be a polynomially
A-operator if p(A) is in A with a non-trivial polynomial p.

In section 4, we show that Weyl’s theorem holds for f(A) whenever
A is a polynomially A-operator and f is an analytic function on an open
neighborhood of o(A), which completely extends earlier results in [8]
and [11] through slightly different approaches.

2. Basic properties of %A-operators

First, we recall that a paranormal operator is normaloid ([15]), that
a compact paranormal operator is normal ([15, Theorem 2] or [23]), and
that scalar perturbations of paranormal operators are not paranormal
as noted in [1, pp.174-175]. But as the case of hyponormal operator,
if A € B(H) is paranormal and A — X for any A € C is quasinilpotent,
then A = AI. Also, if A € B(H) is paranormal, A € isoo(A) and E) is
the Riesz projection corresponding to A, then ranFE) = ker(A — \) ([6]
or [27]), which implies A is isoloid (i.e., isoo(A) C mo(A)). Furthermore,
if A # 0 then E), is self-adjoint and ker(A — \) = ker(A — A)* ([27]).

A-operators share these properties with paranormal operators and
have the following result.

LeMMA 2-1. ([26]) The following holds:

(i) If A € A, then the restriction A|p to its invariant subspace M
is also in .

(i) If A € A and A € C\ {0}, then (A — Nz = 0 implies that
(A—XN*z=0.
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REMARK 2-2. In the case of paranormal operators, the corresponding
result of Lemma. 2-1(i) follows immediately by its definition but that of
Lemma 2-1(ii) does not. In fact, there is a counterexample given by A.
Uchiyama ([28]). It looks very interesting and valuable.

The following result says that 2-operators are finitely ascensive.
THEOREM 2-3. Let A € . Then

(2.3.1) ker(A — \) = ker(A — \)? for all A €C.

Proof. First, let A = 0; if z # 0 € kerA2, then we have
0 = || A%||||z]| = ||| A% |||l
(2.3.2) > (| A%z, ) > (|Al%x, 2)
= |l 4]z]* = || Az|]*.
Second, let A # 0 € C; if  # 0 € ker(A — \)?, then by Lemma 2-1(ii)
we have (A — M)z € ker(A — A\)*. Thus
0= I1(4 ~ A" (4~ Nall|al

(2.3.3) > (A= N)*(A — Nz, )

= [I(4 = Nzl

Since (2.3.2) and (2.3.3) imply ker(A — A\)?2 C ker(A — \) for all A € C
and ker(A — A) C ker(A — A\)? in general, this completes the proof. [

If Ac B(H) and F is a closed set in C, we define
H(F) = {z € H : there exists an analytic H-valued function
f:C\ F — H such that (4 — A)f(\) =z}

H,4(F) is said to be a spectral manifold of A. If A has the single valued
extension property, then the above definition is identical with H4(F) =

{z € H : 04(z) C F}, where o4(z) is the local spectrum of A at z (see
[20] for details).

COROLLARY 2-4. Let A € A and X € isoo(A). Then A has the single
valued extension property and

(2.3.4) ranEy = ker(A — X) = Ha({\}),

where E) is the Riesz projection corresponding to .
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Proof. Since A is finitely ascensive, [18, Proposition 1.8] implies that
A has the single valued extension property. Combining [18, Corollary
2.4] and [27, Theorem 3.7] we easily have (2.3.4), and hence the proof is
complete. 0

REMARK 2-5. Proofs of Theorem 2-3 and Corollary 2-4 are thor-
oughly dependent on Lemma 2-1(ii). So we may notice it is impossible to
get analogous results for paranormal operators. Actually, A. Uchiyama’s
example ([28]) shows that (2.3.1) generally is not true for paranormal
operators.

3. Tensor products of 2-operators

In this section we completely extend earlier results on tensor products
of p-paranormal operators in [7]. We start with

LEMMA 3-1. ([25, Proposition 2.2]) Let A;, B, € B(H) (i = 1,2) be
non-zero positive operators. Then the following conditions are equiva-
lent:

(i) Ai®B1 £ A2 ® By,
(ii) There exists ¢ > 0 such that A; < c Ay and B; < ¢! Bs.

THEOREM 3-2. For non-zero A,B € B(H) A® B € 2 if and only if
A and B e

Proof. Suppose A® B € 2. Then
A’ ® |B|? = |A® B|? < |(A® B)?| = |A%2 ® B?| = |A?| ® | B?|.
Hence, by lemma 3.1, there exists a scalar ¢ > 0 such that
|A|? < ¢|A?| and |B|? < ¢c71|BY.
This implies that

||A]]? = supjg)=1 (A=, z)
< Sup||z|;=1<C|A2|5U7$‘)
< c|l|A%]]] = c||A%| < cl|Al?
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and

||BI]> = sup)jz|=1{|B|*, )
< supll:z:ll:l(c_llelm’ £C>
< cHIB?||| = 7B < ¢ Y|BII

Clearly, we must have ¢ = 1, and then A, B € . Conversely, if A, B € 4,
then (|A%| — |B|?) ® (|B%| — | BJ?) > 0 implies

(14% & |B?|) — (|4 ® |B[?)
> |A?|® |B[* + |A]* ® |B?| — 2|A]* ® |B?
= (|4% - |4*) ® |B* + |A* ® (|1B*| - |BI*) > 0.

Hence A® B € . a

For any X € B(H) let Tap~ : B(H) — B(H) be defined by 745+ (X) =
AXB* and Cy(H) denote the class of Hilbert-Schmidt operators on H.
Then we have

COROLLARY 3-3. For non-zero A, B € B(H), A, B € 2 if and only if
TAB*’C;;(H) e .

Proof. 1t is well known that the tensor product A® B can be identified
with the mapping 74B+|c,(m) (cf., [3, Lemma 2]). This completes the
proof. O

4. Polynomially %A-operators

Let H(K) be the set of all analytic functions on an open neighborhood
of compact subset K C C. In this section we prove that if A is a
polynomially 2A-operator, then Weyl’s theorem holds for f(A) for f €
H(o(A)). This extends well-known results of [8] and [11]: our proof
however employs slightly different techniques.

THEOREM 4-1. If A € B(H) is a polynomially A-operator and f €
H(o(A)), then Weyl’s theorem holds for f(A).

The proof will be given by following several lemmas. We begin by
elementary properties of polynomially 2-operators.
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LEMMA 4-2. Let A be a polynomially d-operator. Then the following
holds.

(1) If A is quasinilpotent, then A is nilpotent.
(if) A is isoloid.
(iii) A is finitely ascensive.

Proof. Towards (i), suppose p(A) is an 2A-operator for a non-trivial
polynomial p. We may write

p(A) = p(0) = aoA™ [T(A = \)

i=1

for some scalars ag, A1,..., A, and integers m,n. If A is quasinilpotent,
then

a(p(4)) = p(o(4)) = p(0),
so that p(A) — p(0) is also quasinilpotent. Thus it follows that

p(4) —p(0) = aA™ [J(4 - x) =0.

i=1

Since A — ); is invertible for every 1 < ¢ < n, we have that A™ = 0.

Towards (ii), suppose p(A) is an A-operator for a non-trivial polyno-
mial p. Let A € isoo(A). Then using the spectral decomposition, we
can represent A as the direct sum A = A; @ Az, where 0(A;) = {\} and
o(Az2) = o(A) \ {A}. Since p(A;) is also A-operator by Lemma 2-1(i),
the quasinilpotency of p(A4;) — p(A\) implies the nilpotency of A; — A
from similar arguments of proof of (i). Therefore A € my(A;) and hence
A € mo(A). This shows that A is isoloid.

Towards (iii), suppose p(A) is an 2A-operator for a non-trivial poly-
nomial p. If A € o(A), then we may assume that for some scalars
ag, A1, .. , Ap and integers m,n

(42.1) p(A) = p(N) = ag(A - N)™ [ (A - ).
i=1

Let z(# 0) € ker(A — \)™*!. Then

(4.2.2) (p(A) — p(A))x = b(A — A\)™z for some scalar b.
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Let p(A) = 0;

0 = [I(4 = )™ al|l]«]
= 116~?p(A)|(l]|=]]
> (Ib=*p(A)%|2, )

(4.2.3) > (7 p(A)*z, 2)
= |~ p(A)e]|*
= [I(4 - \)"a]f?.

Let p(A) # 0; since by Lemma 2-1(ii)

((4) —p(M)A - A"z =0 = (p(4) —p(V))"(A-N)"z =0,

we have
(A = X)™z|* = ((A = N)™z, (A - A)"z)
= (b7 (p(4) - p(N))z, (A — A)™x)
(4.2.4) = (z,b* 7 (p(4) — p(N)* (A — \)™z)

=0.

Thus (4.2.3) and (4.2.4) implies that * € ker(A — A)™. Therefore
ker(A — A)™*! C ker(A — A)™ and the reverse inclusion is evident. This
completes the proof. O

In view of Remark 2-5, it also seems to be impossible to get Lemma
4-2(iii) in the context of (polynomially) paranormal operators.

LeEMMA 4-3. ({17, Theorem 2]) Let A € B(H) be finitely ascensive.
Then Weyl’s theorem holds for A if and only if ran(A — \) is closed for
every A € moo(A).

PROPOSITION 4-4. Weyl’s theorem holds for every polynomially 2-
operators.

Proof. Let A be a polynomially A-operator. Then by Lemma 4-2(iii)
A is finitely ascensive. So it suffices to show that ran(A4 — A) is closed
for every A € moo(A) by Lemma 4-3. Suppose A € mpo(A) and let E)
be the Riesz projection with corresponding to A. Then ran(FE}) is finite
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dimensional because (A — A)|rank, is nilpotent as shown in the proof of
Lemma 4-2(ii), and

0 < dim ker(A — A)|rang, = dim ker(A — \) < oc.
From [18, Corollary 2.4] we have ranEy = H4({A}), and so [19, Lemma

2] implies that A — X is Fredholm. Hence ran(A — A) is closed for A €
oo (A). O

We show that the Weyl spectrum obeys the spectral mapping theorem
for polynomially 2-operators.

LEMMA 4-5. If A € B(H) is a polynomially 2A-operator, then
(4.5.1) w(f(A)) = f(w(A)) for every f € H(c(A)).

Proof. First, let f be a polynomial. Since it is well known ([4, Theo-
rem 3.2]) that

w(f(A)) C f(w(4)),
in view of [13, Theorem 5|, it suffices to show that
(4.5.2) ind (A= X)ind (A —pI) >0 for each pair A, u € C\ o.(4).

By Lemma 4-2(iii), A — Al has finite ascent for every A € C. Observe
that if A — X is Fredholm of finite ascent, then ind(A — A) < 0 by the
same arguments in the proof of [13, Theorem 3]. Thus we can see that
(4.5.2) holds for every polynomially A-operators T. This proves that
the equality (4.5.1) holds for every polynomial f. Now the equality
(4.5.1) for f € H(o(A)) follows at once from an argument of Oberai
([22, Theorem 2J). O

Now, we conclude this paper with the proof of Theorem 4-1.

Proof of Theorem 4-1. Remembering [21, Lemma] that if A is isoloid,
then

f(o(A)\ moo(A)) = o(f(A) \ m(f(A)) for every f € H(a(A));
it follows from Lemma 4-2(ii), Proposition 4-4 and Lemma 4-5 that
o (f(A) \ moo(f(A)) = f(o(A4) \ m00(4)) = f(w(4)) = w(f(A)),
which implies that Weyl’s theorem holds for f(A). O
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