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THE EXISTENCE OF SEMIALGEBRAIC
SLICES AND ITS APPLICATIONS

MyuNnG-JuN CHoi, DAE HEUI PARK AND DONG YOUP SUH

ABSTRACT. Let G be a compact semialgebraic group and M a semi-
algebraic G-set. We prove that there exists a semialgebraic slice at
every point of M. Moreover M can be covered by finitely many
semialgebraic G-tubes. As an application we give a different proof
that every semialgebraic G-set admits a semialgebraic G-embedding
into some semialgebraic orthogonal representation space of G, which
has been proved in [15].

1. Introduction

Let X be a topological space with an action of a topological group
G. For a point z € X a slice of x is a subset S of X containing & such
that

1. GzS =S, where G, = {g € G| gz = z}, and

2. the map ¢: G xg, S — M defined by [g, s] — gs is a G-embedding

onto an open neighborhood GS of the orbit G(z) in X.

When G is a compact Lie group and X is a completely regular G-space,
the existence of a slice was studied by Gleason [6], Montgomery and
Yang [9], and finally proved in the most general form by Mostow [10].

In this paper we prove the existence of a slice in the semialgebraic
category. Namely we have the following theorem.

THEOREM 1.1. Let G be a compact semialgebraic group and M a
semialgebraic G-set. Then

1. for each x € M, there is a semialgebraic G.-slice S at z, and
2. M can be covered by a finite number of semialgebraic G-tubes.
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The existence of a slice plays an important role on further develop-
ments in the theory of topological and smooth transformation groups.
For instance, Mostow [10] used the existence of a slice to prove that
any finite dimensional separable metric G-space with finitely many orbit
types can be topologically embedded in some orthogonal representation
space of G when G is a compact Lie group.

Mostow [10] and Palais [12] also proved the smooth version of the
above embedding theorem independently. In the semialgebraic category
Park and Suh [15] proved the semialgebraic version of the above em-
bedding theorem, without using the existence of a semialgebraic slice,
see Section 2 for the definition of semialgebraic group actions. Since
Theorem 1.1 is available, now we can follow Mostow’s method to give
a different proof of the semialgebraic embedding theorem. Namely we
reprove the following theorem.

THEOREM 1.2 ([15]). Let G be a compact semialgebraic linear group.
Then every semialgebraic G-set can be equivalently and semialgebrai-
cally embedded in some semialgebraic orthogonal representation space
of G.

Note that in Theorem 1.2 we do not assume that the G-space has
finitely many orbit types. However this can be intrinsically assumed be-
cause Theorem 2.6 shows that there are only finitely many orbit types
in a semialgebraic space with a semialgebraic action of a compact semi-
algebraic group.

A semialgebraic space is an object obtained by pasting finitely many
semialgebraic sets together along open semialgebraic subsets. R. Robson
[16, Theorem 1] proved that every semialgebraic space which is ‘regu-
lar’, equivalent to the old fashioned terminology if the base filed is R,
admits a semialgebraic embedding into R™ for some n. In other words,
every regular semialgebraic space is semialgebraically homeomorphic to
a semialgebraic set in R™ for some n. A semialgebraic space M is called
locally complete if every x € M has a semialgebraic neighborhood which
is a complete semialgebraic set. If the base field is R, locally complete is
equivalent to locally compact. Furthermore every locally complete space
is regular. Thus every locally complete semialgebraic space is semialge-
braically homeomorphic to a semialgebraic set in some R"™. Moreover,
H. Delf and M. Knebusch proved the following result which is stated for
an arbitrary real closed field. Since we are working in the real field R
we give the statement of the result for the real field case.
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PROPOSITION 1.3 ([4, 5]). Any locally compact semialgebraic space
can be semialgebraically embedded in some R™ as a closed semialgebraic
subset.

Let G be a semialgebraic group. A semialgebraic G-space is a semi-
algebraic space M with a semialgebraic action : G x M — M of G.

As a corollary of Theorem 1.2, we have the following equivariant
version of Proposition 1.3.

COROLLARY 1.4. Let G be a compact semialgebraic linear group.
Then every locally compact semialgebraic G-space can be equivariantly
and semialgebraically embedded in some semialgebraic orthogonal rep-
resentation space §2 of G as a closed semialgebraic G-subset of {).

Throughout this paper the base field is the real numbers R and all
semialgebraic maps are assumed to be continuous. In this paper we con-
sider the semialgebraic sets in R™ equipped with the subspace topology
induced by the usual topology.

2. Background materials

In this section we review some background materials on semialgebraic
geometry which some readers may not be familiar with. For more prop-
erties in semialgebraic geometry we refer the reader to [1, 3, 4, 5, 13, 14,
15].

The class of semialgebraic sets in R™ is the smallest collection of
subsets containing all {z € R™ | p(z) > 0} for each polynomial p: R" —
R which is stable under finite union, finite intersection and complement.

It follows from the definition of a semialgebraic set that a subset M
of R™ is semialgebraic if and only if there exist polynomials f;; and g;;
fori=1,...,kand j=1,...,1, such that

k
M = | J{z e R"| fi(z) >0, gij(z) = 0 for all j}.

i=1
It is easy to see that the union and the intersection of a finite number
of semialgebraic sets are semialgebraic and that the complement of a
semialgebraic set is semialgebraic. Furthermore, the closure, and hence
the interior, of a semialgebraic set is semialgebraic. In particular, the

cartesian product of two semialgebraic sets is also semialgebraic.

A continuous map f: M — N between semialgebrajc sets M(C R™)
and N(C R™) is called a semialgebraic map if its graph is a semialge-
braic set in R™ x R™. It is easy to show that the composition of two
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semialgebraic maps and the inverse of a semialgebraic homeomorphism
are semialgebraic maps.
The following are elementary properties in semialgebraic geometry.

PROPOSITION 2.1 ([1, Proposition 2.2.7}). Let f: M — N be a semi-
algebraic map.
(1) If A(C M) is semialgebraic, then its image f(A) is semialgebraic.
(2) If B(C N) is semialgebraic, then its preimage f~1(B) is semialge-
braic.

PROPOSITION 2.2 ([13, Lemma 2.4]). Let A, B, and C be semialge-
braic sets, and let f: A — B and g: A — C be semialgebraic maps.
Assume f is surjective. If h: B — C is a continuous map such that
ho f = g, then h is a semialgebraic map.

fl\c

B h

REMARK 2.3. Let A C R"™ be a non-empty semialgebraic set. For
every x € R™, the distance between x and A

dist(z, 4) = inf{Jlz — yll | y € 4}

is well-defined. Moreovér, the map dist4: R" — R, z — dist(z, A),
is semialgebraic and vanishes on the closure A of A (see, [1, Proposi-
tion 2.2.8]).

We now deal with the semialgebraic triangulations of semialgebraic
sets. Let agp,...,a, be generically independent points of R™. The n-

simplex {(ay,...,a,) spanned by ay,...,ay is defined by
n n
(ao,. .. ,an) = {Ztiai € R™ | Zti = 1, t; > O}
1=0 1=0
The open n-simplex (ay,...,a,) spanned by ag,...,an is defined by
' n n
(agy-..,an) = {Ztiai eR™| Zt,‘ =1, t; > 0}.
i=0 i=0
Note that the open 0-simplex (a) is equal to (a) from the definition.
Clearly (ao,...,an) and (ao, ..., an) are semialgebraic sets in R™.

A finite open simplicial complex (K,(o; | i € I)) is defined as a
subset of some R™ equipped with a partition (o; | i« € I) composed of
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a finite number of open simplices ¢; in R™, such that the intersection
0;Na; of the closures of any two open simplices o; and o; is either empty
or a common face of &; and &;. Thus a finite open simplicial complex
(K, (0;)) is obtained from some finite, hence compact, simplicial complex
L by deleting some open simplices o of L.

PROPOSITION 2.4 ([7, 8]). Let M be a semialgebraic set and let
My, ..., My be semialgebraic subsets of M. Then there exist a finite
open simplicial complex K and a semialgebraic homeomorphism 7: | K|
— M such that each M; is a finite union of some of the 7(o), where o
is an open simplex of K.

The above pair (K,7) is called a semialgebraic open triangulation
of M compatible with {M;}. Proposition 2.4 implies that every semi-
algebraic set has a finite number of connected components because an
open simplex is connected. Moreover, every connected component of a
semialgebraic set is also semialgebraic.

The definition of a semialgebraic group is similar to that of a Lie
group. A semialgebraic set G C R" is called a semialgebraic group if
it is a topological group such that the group multiplication and the
inversion

u:GxG— G, (g,h)— gh
i:G—-G, g gt

are semialgebraic. A semialgebraic subgroup is obviously defined. It
is easy to see that the identity component Gy, and the center Z(G) of
a semialgebraic group G are semialgebraic subgroups. Moreover, the
normalizer N(H) of a semialgebraic subgroup H of G is also a semi-
algebraic subgroup. For a semialgebraic homomorphism f: G; — Gs
between two semialgebraic groups the image f(H) (resp. the preimage
f71(K)) is a semialgebraic subgroup of G5 (resp. G;) when H (resp.
K) is a semialgebraic subgroup of G (resp. G2). In particular, ker(f)
is a semialgebraic subgroup of G.

A semialgebraic set M is called a semialgebraic G-set if the action
map 8: G x M — M of G on M is a semialgebraic map.

PROPOSITION 2.5 ([3]). Let G be a compact semialgebraic group and
M a semialgebraic G-set. Then the orbit space M /G exists as a semial-
gebraic set such that the orbit map m: M — M /G is semialgebraic.

As an immediate consequence of Propositions 2.5 with 2.2, if G is
a semialgebraic group and H a compact semialgebraic subgroup of G,
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the homogeneous space G/H is a semialgebraic G-set. On the other
hand, for a semialgebraic G-set M, the orbit G(z) of x € M is clearly
a semialgebraic G-set. Moreover, the isotropy subgroup G, = {g € G |
gz = z} is also a closed semialgebraic subgroup of G for all x € M. As
in the theory of Lie group actions, the natural map

Oy . G/Gw - G(.T)), 9Gy — gz

is a semialgebraic G-homeomorphism (see, [15, Proposition 2.6]).
Unlike topological or smooth transformation group theory we have
the following theorem in the semialgebraic category.

THEOREM 2.6. Let G be a compact semialgebraic group. Then every
semialgebraic G-set has only finitely many orbit types.

Proof. Let M be a semialgebraic G-set. Note that the orbit space
M/G and the orbit map 7: M — M/G are semialgebraic by Proposi-
tion 2.5. Apply the nonequivariant local triviality to 7 (see [1, Theo-
rem 9.3.2]), then we can find semialgebraic subsets By, ..., By, of M/G
with M/G = Uf=1 B; and semialgebraic homeomorphisms 7~1(b;) x B;
n~}(B;) preserving fibers for some b; € B;. Since a semialgebraic set has
a finite number of connected components, we can assume B; are all con-
nected without loss of generality. Now the claim is that 7~1(B;) has one
orbit type for each i. We fix B = B;, b = b; and first prove this claim
locally.

For a given b € B, choose a neighborhood W of b in B such that there
is a continuous (which may not be semialgebraic) G-map f: 7~ }(W) —
7~ 1(b). (The existence of such W follows from the existence of slices in
the topological category [2, Theorem I1.4.2].) Moreover we assume W is
connected. For another point ' € W we assert that the type of ¥’ is equal
to that of b. On the contrary, suppose type(7~1(b)) < type(r~1(%)). Let
b; be a path in W connecting b to ¥'. Let U;: 771(b) — 7~ 1(b;) be the
parameterized homeomorphisms occurring from the restriction of the
homeomorphism 7~1(B) & 7~1(b) x B. Let ¢;: 7~1(b) — 7n~1(b) denote
the composition foW;. Then ¢q is the identity map and ¢, is a covering
map with nontrivial fibers. These two maps could not be homotopic,
which is a contradiction. Thus we proved that the orbit type is constant
over W.

Now for any two points of B we can connect them by a curve. Then
by the compactness of the path and the consecutive application of the
above argument, we can show that the two points have the same orbit
type and the claim is proved over B. Since the number of B;’s is finite,
the proof is complete. O
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For any subgroup H of G, let My denote the set of points having
orbit type G/H, i.e.,

Mgy ={zeM |G, = gHg™! for some g € G},

then Mg, is a semialgebraic G-subset of M. In particular the set of
fixed points of G on M,

MG={:B€M|gx:xforallg€G}=M(G)

is a closed semialgebraic subset of M.

3. The existence of semialgebraic slices

This section is devoted to the proof of the existence of semialgebraic
slices of semialgebraic G-sets. A semialgebraic slice is a semialgebraic
analogue of a topological slice defined in Introduction. More precisely,
it is defined as follows.

Let M be a semialgebraic G-set. For x € M, the isotropy subgroup
G, of G at x is a semialgebraic subgroup of G. A semialgebraic slice S
of z is a semialgebraic subset of M containing z such that

1. Go,S=S

2. the map ¢: G x@g, S — M defined by [g, s] — gs is a semialgebraic
G-embedding onto an open semialgebraic neighborhood G'S of the
orbit G(z) in M.

We call GS a semialgebraic G-tubular neighborhood of G(z). The map
¢ is called a semialgebraic G-tube about G(z).

LEMMA 3.1. Let M be a semialgebraic G-set and let S be a semi-
algebraic subset of M containing x. Then the following statements are
equivalent.

(1) S is a semialgebraic slice at .
(2) GS is a semialgebraic G-invariant open neighborhood of G(x) and
there is a semialgebraic G-retraction f: GS — G(x) such that

7 x) = 8.

Proof. To show that (1) implies (2), let S be a semialgebraic slice.
Define a map h: G xg, S — G/G, by h(lg, s]) = gG.. Then we have
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the following commutative diagram

GxS i G xg, S

.| I

G G/Ge

]

where m; and w2 are semialgebraic orbit maps and p; is the natural
projection. By Proposition 2.2, h is a surjective semialgebraic map.

Define f: GS — G(z) by f(gs) = gz. Then we have the following
commutative diagram

G X Gy S = GS
| |
G/Gy = G(x).

Qg

Therefore f has the desired property by Proposition 2.2.
That (2) implies (1) is clear since S is a topological slice at = (see,
[2, Theorem 11.4.2]). O

PROPOSITION 3.2. If S is a semialgebraic slice at x in a semialgebraic
G-set M, then the natural map

K: S/Ge — M/G, ([s]— [s])
is a semialgebraic homeomorphism onto the open subset GS/G.
Proof. By the corresponding fact in topological group theory (see, [2,
Proposition 11.4.7]), & is a homeomorphism. So it is enough to show that

 is semialgebraic. This is clear by Proposition 2.2 with the following
commutative diagram

GxS

l \
p2

s : GS
]
G/G, > GS/G,

where mg and 7 are semialgebraic orbit maps, ps is the natural projec-
tion, 4 is the inclusion and @ is the action map. Note that 7 and x are
surjective. n
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To construct a semialgebraic slice, we need two technical lemmas
concerning nonequivariant semialgebraic sets. Recall that a function
f: M — R is lower (resp. upper) semi-continuous if the set {z € M |
f(z) > a} (resp. {x € M | f(z) < a}) is open for all a € R.

LEMMA 3.3. Let M be a semialgebraic set, and let f: M — R (resp.
g: M — R) be a lower (resp. upper) semi-continuous semialgebraic
function such that g(z) < f(z) for all z € M. Then there exists a
continuous semialgebraic function h: M — R such that g(z) < h(z) <
f(z) for allz € M.

Proof. We can choose a semialgebraic open triangulation (K, 7) of M
such that both f and g are continuous over the interior of each simplex
of K. Indeed, we can see this as follows. By the local triviality the-
orem for semialgebraic maps ([1, Theorem 9.3.2]), there exists a finite

cover {Mf } of semialgebraic subsets of M such that for the projection
p: G(f) = {(z,y) € M xR |y = f(z)} — M, (z,y) ~ z, the in-
verse image p~' (M) is semialgebraically homeomorphic to M/ xp~(b;)
for some b; € Mf . (Here, we applied the local triviality theorem to
the map p: G(f) — M instead of f to achieve the continuity of the
map p which is needed in the theorem.) Let p~(b;) = {3}. Then
clearly f is continuous on each Mif since f(z) = mg 0 ¥™1(x,y;) where
(/8 p—l(Mz-f ) — Mif x p~1(b;) is the semialgebraic homeomorphism ob-
tained by the local triviality theorem and me: G(f) — R is the projec-
tion. Similarly we can find such {M jg } corresponding to the function g.
If we choose a semialgebraic open triangulation (K, 7) of M compatible
with the finite collection {sz }U{M]}, then we are done.

We construct the desired function h: M — R by the induction on
the skeleta of K. Assume that a continuous function hy: K1) — R
is defined such that g(z) < hi(z) < f(z) for all z € [K™ V| Let
0 be an n-dimensional simplex of K which is closed in K. (Since we
are working with an open simplicial complex, § may not be compact.)
Then the proof is reduced to the construction of h: § — R satisfying
the inequality condition and extending f11: 85 — R where 86 means the
boundary of §.

First, let us construct a lower semi-continuous semialgebraic function
f': 6 — R and an upper semi-continuous semlalgebralc functlon g:6—

R so that g(z) < ()<f'()<f()forallx€6where6—6 06

is the interior of 4. For this aim, let «: § — (0,00) be a continuous
semialgebraic function such that it vanishes when it approaches to the
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boundary of J, e.g., a(z) = dist(z, d8) for z € §. Define o/: § — [0, 00)

by ¢/ (z) = min(a(z), (f —g)(z)/3) for x € §, then &' is continuous in the
interior of § and vanishes when it approaches the boundary of 6. Thus it
extends continuously over 6. Define f',¢': 6 — Rby f/'(z) = f(z)—d/(z)
and ¢'(z) = g(z) + o/ (z) for z € 6.

Finally let us construct h: § — R such that ¢'(z) < h(z) < f/(z) for

z € § and that h extends h1 ; then, it follows that g(z) < ¢'(z) < h(z) <

h'(z) < f(z) for z € § and g(z) < h(z) = hy(z) < f(zx) for = € 8§, and
hence the proof will be complete.

By the semialgebraic version of the Tietze extension theorem ([4,
Theorem 3]), the continuous semialgebraic function hy: 3§ — R has a
continuous semialgebraic extension hy: § — R. We now modify hy so
that it satisfies the inequality over all §. Let f = min(f’, h2). Since both

f" and hg are continuous on §, automatically f is continuous on 8. On
the other hand f is continuous on 84: since f’ is lower semi-continuous
and hy(z) < f'(x) on 84, it follows that f(x) = hy(x) on a neighborhood
of 34. So both facts imply that f is continuous all over 4.

Now let h = max(g’, f), then h is continuous on & by the same reason
for f = min(f’, hy). It is obvious that ¢'(z) < h(z) < f'(x) forall z € &
from its definition, which completes the proof. O

LEMMA 3.4. Let (6™,6" 1) be a pair of simplices in an open simplicial
complex K such that 6™ is a face of 6. Let U be a given semialgebraic
open neighborhood of §*~! in ™. Then there is a semialgebraic closed
neighborhood N C U of 6"~ and a semialgebraic retraction v: 6" — N
such that y(6" — 6" 1) c N — 6L,

Proof. If ™ and 6™~ ! are closed simplices, then the proof might be
easier, but note that they need not be closed simplices in our case.
Embed (67,6 1) in (6”1 x I,6"!) as in the following figure.

~ an—l % I

671.—1

Let V be a semialgebraic open neighborhood of 6”1 in 6”~! x I such
that VN =U. Let f: 6" ! — R be a semialgebraic function defined
by

f(z) =sup{reR |z x[0,r) C V}
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Then f is lower semi-continuous. (For any z € 6" ! such that f(z) >
a, let b = f(x) —a. Then z X [0,a + b/2] C V. Since the interval
[0,a + b/2] is compact, we can find a neighborhood A C §"~! such that
A x[0,a+b/2) CV. Thus f(y) > a+b/2 > a whenever y € A.)

We now apply Lemuma 3.3 with the above f and with g = 0, to get
a continuous semialgebraic function h: "' — R such that 0 < h(z) <
f(z) for all z € 6" L. Let N' = {(z,5) | 0 < s < h(x), z € " 1}. Let
v 6" x I — N’ defined by

) ) (z,h(z)), t=>h(z)
““””‘{@,t), t < h(z).

Now let N = N’ N§™ and let v = 4'|s». Then it is easy to see that
and N satisfy the desired properties. O

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let z( be a given point in M. By Theorem 2.6
M has finitely many orbit types, say type(G/H1), ..., type(G/Hg). Con-
sider the N (H;)-subspace MH: « M for each i = 1,...,k. The orbit
map 7: M — M/G restricts to

mg,: MH — M N(H;).

We apply semialgebraic trivialization to each ;, we get Bj, such that
UBj, = Mt /N(H;) and semialgebraic cross sections s;,: Bj, — M.
We simply write the index j; just as i. Now we choose a semialgebraic
triangulation (K, 7) of B = M /G compatible with B;. We replace K by
its barycentric subdivision to contain m(z) as a 0-simplex. Then

(A) every € K contains a 0-simplex, and
(B) the interior 5 of 6 has a continuous semlalgebralc cross section

s:6 — Mofm: M — M /G such that 5(5) has a constant stabi-
lizer.

Let {vg = m(x0),v1,...,u} be the set of all vertices of K. By the
property (A), the set {St(v;) | i =0,. l} of the (open) star neighbor-
hoods covers |K| = M/G and thus 77 1(St(vg)), ..., w1 (St(v;)) cover
M. We claim that 7—!(St(v)) is a semialgebraic G-tube of the orbit
7 1(v) for v =vy,...,v.

By Lemma 3.1, showing that 7—1(St(v)) is a semialgebraic G-tube is
equivalent to constructing a semialgebraic G-retraction f: 7~1(St(v)) —
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7~ 1(v). We shall construct a semialgebraic G-retraction
fam1: 71 (St(0) D) = 7 (St(v) " 2),

for each n by using the induction on n. Then the composition f =
foo fio--- will be the desired G-retraction.

Let 0 be an n-simplex (closed in K) of K containing v as a vertex
and let " = § N St(v)(™. Since each n-simplex of St(v) is of the form §™
we restrict our attention to constructing a semialgebraic G-retraction

fa: X = 771" - n71(36™) = 6X

where 36" = 6 N St(v)»~1. Here, the symbol & does not mean the
boundary but we use it just for notational convenience.

(o]

Since 6™ — 6™ = 4§, by the property (B), there is a semialgebraic
cross section s: 6" — 6™ — XH < X where H is an H = H; for some i
occurring in the orbit types. Let Y be the closure of (6" — 96™) in X,
and we simply denote 0Y =Y NoX.

We now claim that there exists a semialgebraic retraction

r:'Y — Y.

Let U be a semialgebraic regular neighborhood of Y in Y. Since G is
compact and so 7 is a closed map, the set U = n(U) is again a semialge-
braic neighborhood of 36™. By a suitable semialgebraic homeomorphism,
the pair (6", 06™) is homeomorphic to a pair composed of a simplex and
one of its faces (8, 6" 1) with a neighborhood which is homeomorphic to
U. By Lemma 3.4 there is a semialgebraic closed neighborhood N C U
and a retraction r: § — N such that (6§ — 6" 1) ¢ N — 61 We lift
this retraction toamap r': Y — U , more precisely define by
Y(z) = sorom(z), z€Y —-0Y
x, z € 9Y.

Since the regular neighborhood U has a retraction to dY, the compo-
sition of this map followed by r’ gives a retraction 7: Y — 8Y. This
proves the claim.

Now the rest is routine. From the retraction 7#: Y — JY we define
a semialgebraic G-retraction f: X = GY — G(0Y) = 80X by f(g9z) =
g7(z) which was needed to complete the proof. a
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4. Semialgebraic G-representation spaces

In this section we discuss some properties of semialgebraic represen-
tations of semialgebraic groups. A semialgebraic group is called a semi-
algebraic linear group if it is semialgebraically isomorphic to a semialge-
braic subgroup of some general linear group GL,(R). Note that GL,(R)
is a semialgebraic set in M,(R) = R™, where M, (R) denotes the set of
all n x n matrices over R. A semialgebraic representation of G is, by
definition, a semialgebraic homomorphism p: G — GL,(R) for some n.
By a semialgebraic orthogonal representation of G we mean a semialge-
braic homomorphism p: G — O(n) where O(n) is the orthogonal group.
In this case R™ equipped with the linear action of G via p is denoted by
R"™(p) and called a semialgebraic orthogonal representation space of G.

PROPOSITION 4.1 ([15, Lemma 2.2]). Every compact subgroup H of
a semialgebraic linear group G is a semialgebraic subgroup of G.

PROPOSITION 4.2 ([15, Corollary 2.3]). Let f: G — H be a topolog-
ical group homomorphism between two semialgebraic linear groups G
and H. If G is compact, then f is semialgebraic.

It is well known that, for a closed subgroup H of a compact Lie group
G, there exist a representation p: G — O(n) and a point v € R"(p) such
that G, = H. We have the semialgebraic analogue of this fact as follows.

PROPOSITION 4.3 ([15, Proposition 2.4]). Let G be a compact semi-
algebraic linear group and H a closed (semialgebraic) subgroup of G.
Then there exist a semialgebraic faithful representation p: G — O(n)
for some n, and a point u(# 0) of R"(p) such that G, = H.

PROPOSITION 4.4. Let G be a compact semialgebraic linear group
and H a closed (semialgebraic) subgroup of G. If Q is a semialge-
braic orthogonal H-representation space then there is a semialgebraic
orthogonal G-representation space = which, considered as an H-space
by restriction, has §) as an H-invariant linear subspace.

Proof. It is a consequence of Proposition 4.2 together with the corre-
sponding facts in topological group theory (see, [12, Proposition 1.4.2]).
]

Let X be a semialgebraic G-set and H a closed semialgebraic sub-
group of G. A semialgebraic subset S of X is called a semialgebraic
H-kernel if there exists a semialgebraic G-map f: GS — G/H such
that f~1(eH) = S. Note that a kernel is a more generalized notion of
slice, in particular, every slice at z is a Gz-kernel.
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COROLLARY 4.5. Let G be a compact semialgebraic linear group
and H a closed (semialgebraic) subgroup of G. If ) is a semialgebraic
orthogonal H-representation space then there exists a semialgebraic H-
embedding of §2 onto a semialgebraic H-kernel in some orthogonal semi-
algebraic G-representation space E.

Proof. By Proposition 4.3, there exist a semialgebraic orthogonal G
representation space Z' and a point ug(# 0) of & such that G,, = H.
By Proposition 4.4, there is a semialgebraic orthogonal G-representa-
tion space ' which includes 2 as an H-invariant linear subspace. Set
E =2 @ Q. Then E is a semialgebraic orthogonal G-representation
space. Clearly ¢: Q@ — E = @ Q, v — (ug,v), is a semialge-
braic H-embedding. The image S = ¢(f2) is an H-invariant closed
semialgebraic subset of Z. Moreover if ¢ ¢ H and (up,v) € S then
g{uo,v) = (guo, gv) ¢ S because g ¢ H = G,,. Consider the semialge-
braic G-map f: GS — G/H, gs+ gH. Then f~!(eH) = S. Hence S
is a semialgebraic H-kernel. g

LEMMA 4.6. Let €2 be a semialgebraic orthogonal representation space
of G. Then there exists a semialgebraic embedding ¢: Q@ — Q & R such
that ||p(x)|| = 1 for all x € 2 where R denotes the real one dimensional
trivial representation space of G.

Proof. Let v be a non-zero real number. Clearly the map ¢: Q —
2 @ R defined by ¥(z) = (x,v) is a semialgebraic G-embedding. Define
0: 2 — Q@R by p(z) = ¥(x)/||¢(x)|l, then ¢ is the desired semialge-
braic G-embedding. |

5. Equivariant semialgebraic embeddings

In this section we prove the semialgebraic version of the equivariant
embedding theorem. Since many things of the proofs in this section are
similar to that of [12], here we just sketch them and refer the reader to
the cited paper for more detail.

LEMMA 5.1. Let G be a compact semialgebraic group and M a semi-
algebraic G-set. If M — M admits an equivariant semialgebraic embed-
ding in some orthogonal semialgebraic representation space of G then
so does M.

Sketch of the proof. Let M be a semialgebraic subset of R"” and M /G
a semialgebraic subset of R*. We define a semialgebraic map h: M/G —
R by h(z) = dist(z, M%/G) = inf{||z — y|| | y € MP/G}. Then the
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composition map h=hom: M — R is semialgebraically G-invariant.
Let f: M — M® — Q be a semialgebraic G-embedding. By Lemma 4.6
we can assume ||f(z)|| = 1 for all z € M — MC. Define f: M — Q by

2 | hx)f(x) fzeM—MC

f(‘”)_{o if z € MC.

Then f is clearly a semialgebraic G-map. Now we define ¢: M — RF*@Q
by ¢(x) = (n(x), f(x)) where R* denotes k-dimensional trivial real G-
representation space. Then ¢ can be shown to be continuous (see [12,
p-22]). Hence ¢ is a semialgebraic G-embedding. O

PROPOSITION 5.2. Let G be a compact semialgebraic group and M a
semialgebraic G-set. Let Uy,...,Uy be a covering of M by open semial-
gebraic G-subsets of M. If each U; admits a semialgebraic G-embedding
in a semialgebraic orthogonal G-representation space §); then so does
M.

Sketch of the proof. Let m: M — M/G be the semialgebraic orbit
map. Let U} = 7(U;) and let hf,...,h;: M/G — [0,1] be a semialge-
braic partition of unity subordinate to U¥, ..., Uf (see [4, Theorem 1.6]).
Define a semialgebraic G-invariant map h;: M — [0,1] by h; = h} o 7.

Let ¢;: U; — ; be a semialgebraic G-embedding. Now we define a
semialgebraic G-map ¢;: M — ; by

_ | hi(z)i(x) ifzel;
wil@) = { 0 if z ¢ U;.

Let R* denote k-dimensional trivial real G-representation space. Then
the map ¢g: M — R¥ defined by ¢o(z) = (h1(x), ..., hx(x)) is a semi-
algebraic G-invariant map. The map

o: M- RS- &, - (po(2), p1(2), -, 04(2))

is a G-embedding (see [12] for the detail). Hence ¢ is a desired semial-
gebraic G-embedding. O

We now prove Theorem 1.2.

Proof of Theorem 1.2. By the induction argument, we can assume
that the theorem is true for all proper closed (semialgebraic) subgroups
of G. By Lemma 5.1 it suffices to show that the semialgebraic G-set
M — M€ admits a semialgebraic G-embedding in a semialgebraic orthog-
onal G-representation space. By Theorem 1.1 there are finite number of
semialgebraic H;-slices S1,..., Sy of M — M such that GSi,...,GSk
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cover M — MC. Since each H; is a proper subgroup of G, by the induc-
tion hypothesis, there is a semialgebraic H;-embedding ¢;: S; — ; in a
semialgebraic orthogonal H;-representation space €2;. By Corollary 4.5,
there exists a semialgebraic H;-embedding ; of ; onto a semialgebraic
H;-kernel in some semialgebraic orthogonal G-representation space E;.
Then the map f;: GS; — Z;, defined by f;(gs) = gvi(vi(s)), is a semi-
algebraic G-embedding. Since each G'S; is an open semialgebraic subset
in M, by Proposition 5.2, M — M admits a semialgebraic G-embedding
in a semialgebraic orthogonal G-representation space. O

REMARK 5.3. The linearity condition of the semialgebraic group is
necessary as well as sufficient. Let G be a compact semialgebraic group
and let M be equal to G viewed as a semialgebraic G-set with left
multiplication. If M has a semialgebraic embedding f: M — R"(p) for
some semialgebraic representation space R"(p) of G, it follows that G
acts effectively on R"(p), i.e. p is faithful, so that G is a semialgebraic
linear group. Moreover there is a compact semialgebraic group which is
not linear (see, [15]).

REMARK 5.4. Let G be a compact semialgebraic linear group. Let M
be a regular semialgebraic G-space. By Theorem 1 of [16], there exist a
semialgebraic set N C R¥ and a semialgebraic homeomorphism f: M —
N. Then f induces a semialgebraic action of G on N, so that f: M — N
is a semialgebraic G-homeomorphism. Since N is a semialgebraic G-set,
there exists a semialgebraic G-embedding ¢ into some semialgebraic
orthogonal representation space of G by Theorem 1.2. Hence every
regular semialgebraic G-space can be equivariantly and semialgebraically
embedded in some semialgebraic orthogonal representation space of G

by po f.
We now prove Corollary 1.4.

Proof of Corollary 1.4. Let M be a locally compact semialgebraic
G-space. By Remark 5.4, we can view M as a semialgebraic G-subset
of a semialgebraic orthogonal G-representation space 2.

Set A = M — M where M is the closure of M in Q. Since M is
locally compact, A is a closed semialgebraic subset of 2 (see [4, Propo-
sition 3.3]). We may assume A # & unless M is already closed. The
map f: Q — R, defined by, f(z) = dist(z, A), is semialgebraic, and
G-invariant. Define a semialgebraic embedding ¢: M — Q @& R by
o(xz) = (z,1/f(z)). Since  is an orthogonal G-representation, ¢ is
a G-map. Clearly, the image of ¢ is the closed semialgebraic set defined
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{(z,y) eQ@R |z M, yf(z) =1}.
O

COROLLARY 5.5. Let G be a compact semialgebraic linear group.
Then every semialgebraic G-manifold can be equivariantly and semial-
gebraically embedded in some semialgebraic orthogonal representation
space S of G as a closed semialgebraic G-subset of 2.

Proof. Immediate from Corollary 1.4 since every semialgebraic man-
ifold is locally compact. O

COROLLARY 5.6. Let G be a compact semialgebraic linear group. If
M is a locally compact semialgebraic G-set, then there exists a semial-
gebraic one point G-compactification of M.

Proof. By Corollary 1.4, we may assume that M is a closed semial-
gebraic G-subset of some orthogonal semialgebraic representation space
Q of G. We may assume that 0 ¢ M because otherwise we can replace
Mby M x {1} C Q®R. Let ¢: Q@ — {0} — Q — {0} be the inversion
through the unit sphere, 9(z) = x/||z||?. Clearly ¢ is a semialgebraic
homeomorphism, and thus 9(M)U{0} is a semialgebraic set in 2. Form
this we can see that ¥(M) U {0} is the desired compact semialgebraic
G-set. O
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