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FINITE ELEMENT APPROXIMATION AND
COMPUTATIONS OF OPTIMAL DIRICHLET
BOUNDARY CONTROL PROBLEMS
FOR THE BOUSSINESQ EQUATIONS

HyunGg-CHUN LEE AND SooHYUN KIM

ABSTRACT. Mathematical formulation and numerical solutions of
an optimal Dirichlet boundary control problem for the Boussinesq
equations are considered. The solution of the optimal control prob-
lem is obtained by adjusting of the temperature on the boundary.
We analyze finite element approximations. A gradient method for
the solution of the discrete optimal control problem is presented and
analyzed. Finally, the results of some computational experiments
are presented.

1. Introduction

Recently there has been substantial interest in control of fluid flows by
virtue of its applications in flow separation, combustion, fluid structure
interaction, design of novel submarine propulsion devices and modeling
of nuclear reactors as industrial engineering progress. In consequence,
many mathematicians and scientists have studied in mathematical anal-
yses and computations of optimal control problems for fluid flows; see
[2, 3, 5, 9, 11, 13, 14, 17, 25, 26, 29, 31, 32, 34, 35, 36] and references
therein. In [31, 32], vorticity minimization problem was considered and
optimality system was driven for the stationary Boussinesq equations
with Neumann boundary control and in [29, 36] with Robin type bound-
ary control. Velocity tracking problem was analyzed and given the nu-
merical results in [23, 24, 25, 26, 27, 28] for time dependent Navier-
Stokes equations and just presented the algorithm and computations in
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[36] for time dependent Boussinesq equations. In [34, 35|, a tracking
problems for the time-dependent 2D Boussinesq equations was studied
with distributed controls. In {17, 22], controlling boundary temperature
problems for stationary flow with Dirichlet and Neumann boundary tem-
perature controls were considered in which a weakly temperature-fluid
coupled system was considered. In [30], a Dirichlet boundary control
problems for the Boussinesq equations was analyzed and a computa-
tional algorithm was presented.

In this article, we will address optimal control problems for steady in-
compressible flows whose motions are governed by the Boussinesq equa-
tions. We complete the analytical and numerical theory and get new
computational results for a Dirichlet boundary optimal control problem
of the Boussinesq equations with mixed boundary conditions.

We now write the 2-D non-dimensional stationary Boussinesq equa-
tions as follows:

—vAu+ (u-Vju= —Vp+Tg+f inQ,
(1.1) V-u=0 inQ,
—kAT + (u-V)T=Q inQ

with mixed boundary conditions

B_T
on

where Q is the regular bounded open set in R2, with Q € C?. In
(1.2), T'p =900\ I'n, I't = 'p\I'y and I'y is a regular nonempty open
subset of Q. In (1.1)-(1.2), u, p and T denote the velocity, pressure
and temperature fields, respectively, f a given body force, h a given
function, () a given heat source, and g a Dirichlet boundary control. The
vector g is a unit vector in the direction of gravitational acceleration and
£ > 0 the thermal conductivity parameter. In this paper we consider,
for simplicity, the case of constant . The vector n denotes the outward
unit normal to Q and v > 0 denotes the kinematic viscosity.
The three functionals that we wish to minimize are given by

(1.2) u=00n9Q, T=honly, T=gonl,, =0 only,

1 )
13)  Z@Tpe)=j [ 1Vxul dx+5lalmng,

1 )
(1.4) Fo(w,T,p,9) == | IT—Ty* dx+ z |l gllm ),
2 Jr. 3
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and
1 .5
(15) ~.73(u7T7pag) = E Q‘U—Ul dx+§“g[|H1(Fr)

Here T', is the portion of 2 where we want to match the temperature
with Ty. The optimal control problems we consider are to seek state
variables (u,p,T), and control g such that the functional (1.3), (1.4) or
(1.5) is minimized subject to (1.1)-(1.2) where Ty and U are some de-
sired temperature on the boundary I', and velocity distributions. The
functional (1.3) measures the vorticity of the flow. The control of vortic-
ity has significant applications in science and engineering such as control
of turbulence and control of crystal growth process. The functional (1.4)
effectively measures the difference between the temperature field T and
a prescribed field T;. By minimizing the functional (1.4) we can avoid
any hot spots that may destroy the containers. This optimization prob-
lem may be applied to engine components, post-combustion chambers,
and nuclear reactor piping. The first term in the functional (1.5) mea-
sures the L2-distance between the candidate flow and the desired flow.
Thus, the physical objective of this minimization problem is to match a
desired flow field (in the L2-sense) by adjusting the boundary temper-
ature g. The real goal of these optimization problems is to minimize
the first terms appearing in the definition of the functionals (1.3)-(1.5).
The other terms in the cost functionals (1.3)-(1.5) are added to limit the
cost of controls. The positive penalty parameter § can be used to change
the relative importance of the four terms appearing in the definitions of
the functionals. The plan of the article is as follows. In Section 1.1 of
this section we introduce the notations that will be used throughout the
Section 2, 3, and 4. In §2, we analyze finite element approximations. In
§3, a gradient method for the solution of the discrete optimal control
problem is presented and analyzed. Finally in §4, the results of some
computational experiments are presented.

1.1. Notations

We introduce some function spaces and their norms, along with some
related notations used in subsequent sections; for details see [1]. Let
be a bounded domain of R? with a C? boundary 9. Let L?(f2) be the
space of real-valued square integrable functions defined on 2, and let
| - lz2() be the norm in this space. For any nonnegative integer m, we
define the Sobolev space H™(2) by

H™Q) ={ueI*): D*uec L*(Q) for 0<]|a|<m},
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where D%u denotes the weak (or distributional) partial derivative and
o is a multi-index, |a| = 3, o;. Note that HO(2) = L?(Q). We equip
H™(Q) with the norm

2 2
hallz, = > I1ID%ulZ2(q)-
laj<m

For vector valued functions, we define the Sobolev space H™(2) (in all
cases, boldface indicates vector-valued) by

H™(Q) = {u = (u1,ue)lus € H™(Q),5 = 1,2},

and its associated norm || - || (q) is given by

2
lalfimy = Y Il wi [3m gy

i=1

We also define particular subspaces

@ ={rerr@: [ rax=o},
H{(Q)={ueH(Q):u=00nT},
and
HL={Se€ H(@Q):S=00nTp}.

We make use of the well-known space L*({2) equipped with the norm

- llLay-
We also define the solenoidal spaces

V={ucH\Q):V -u=0}

If Q is bounded and has a C? boundary (these are the kinds of do-
mains under consideration here), Sobolev’s embedding theorem yields
that H1(Q) —<— L%(Q), where << denotes compact embedding;i.e.,
a constant C exists such that

luliza@) < Cllullag)-

Obviously, a similar result holds for the spaces H*(Q) and L*(12).

Finally, we restrict our computational domain € such that I;NT, =
orh=gat;NT,ifI;NT, #0
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1.2. Weak formulation and optimality system

We introduce the following bilinear and trilinear forms:
ap(u,v) = /QVu : Vvdx vu,v € HY(Q),
ay(T,S) = /Q kVT - VSdx VT, S € HY(Q),
bo(u,v,w)=/Q(u-V)v-wdx vu,v,w € HY(Q),
bi(u,T,S) = /Q(u -VT)S dx Yu € HY(Q),VT, S € H}(Q),
c(u, q) =—/QqV~udx vu € H(Q),Vq € L*(Q).

We first note that the bilinear forms ag(-,-) and ai(-,-) are clearly
continuous, i.e.,

(1.6) lao(u, V)| < Cllullg @yl v a1 (@)
and

(L.7) lar(T, )| < CI T aroyll S 1 ().
(1.8) le(u, @)| < Cllullg oyl g llizz@)-

We have the coercivity relations associated with ag(-,-) and a1(-, ")
(L9 ao(w,u) = [ ulZeq = Cillulng — Vue HYQ)
and
(110) @I =Ty 2 Gl T i, VT € HH(®)
which are direct consequences of Poincaré inequality.

LEMMA 1.1. For everyu,v,w € HY(Q) and every T, S € H'(f) there
are constants C1 and Cy such that

(L11) oo, v, w)| < Crillullm @l v Ilm @)l Wl )
(1.12) bo(u,v,v) =0 ifueV,
(1.13) |1, T, 8)| < Collullm @l T lmoyll Sl YueV

and

(1.14) b(w,T,T)=0 if ueV.
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Proof. These follow from the Cauachy-Schwarz inequality, Holder’s
inequality, and various embedding results, in particular the continuous
embeddings of H! into L4 and L2 and H! into L* and L?, respectively.

(|

The weak form of the constraint equations (1.1)-(1.2) is then given
as follows: find (u,p,T,t) € HY(Q) x L&(Q) x H}(Q) x H™2(T,) such
that

(1.15)

vag(u,v) + bo(u,u,v) +c(v,p) = (Tg,v) + (f,v) Vv e H}(Q),
(1.16) c(u,q) =0 Vqe L§(Q),
(1.17)  a(T,S) + b (w,T,8) — (t,9)r, = (Q,8) VS € H:(Q),
(1.18) (T,R)r, = (9,R)r, VREH3(Ty),
and
(1.19) T=h onIy

where t = VT - n|r, .

The analysis for Dirichlet boundary optimal control problems was
studied in [30]. We describe the optimal control problem involving the
functional (1.5) and state the optimality system.

We look for a (u,p, T, g) € HY(Q) x L&(Q) x H}(2) x V such that the
cost functional

1 6
120)  JpTe)=j [ VPt Sl
is minimized subject to the constraints
(1.21)
vag(u,v) +bo(u,u,v) + c(v,p) = (Tg,v) + {f,v) Vv e Hy(),
(1.22) c(u,q) =0 Vg e L§(%),

(1.23)  ay(T,S)+by(u,T,8) - (t,S)r, = (Q,8) VS e H ),
(124)  Tln,=h, (T,R)r,=(g,R)r, YReH i(T,)

where t = VT - n|r,, and V is a nonempty, closed, and convex subset of
HY(T,).
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The optimality system is as follows : find (u,p, T, €,%,0) € HE() x
L) x HY(Q) x H)(R) x L§(Q) x HL(K2) such that

(—vAu+ (u-Viu+Vp=Tg+f inQ,
V.u=0 in(Q,
(1.25)3 kAT +(u-V)T=Q in®,
oT
\ T=honly, Ti|r, =y, 551“1\,_0’
(—VvAE—(u-V)E+E- (V)T +0VT +Vp=u-U inQ,
V-£=0 in,
—KA—(u-V)I=¢-g inQ,
(1.26)4 56
%20 on PN,
{ —Asg—i—g:—%V&nlpr on I'y.

1.3. Quotation of some results concerning the approxima-
tion of a class of nonlinear problems

Here for the sake of completeness, we will state the relevant results
specialized to our needs. The nonlinear problems considered in [7] and
[15] are of the type

(1.27) F(\¢) = ¢+ AG(\¥) =0

where A € L(Y;X), G is a C? mapping from A x X into Y, where X
and Y are Banach spaces and A is a compact interval of R. We say
that {(A\,¥(X)) : A € A} is a branch of solutions of (1.27) if A — ()
is a continuous function from A into X such that F(A,¢(A)) = 0. The
branch is called a nonsingular branch if we also have that Dy F'(X, 9()))
is an isomorphism from X into X for all A € A. Here, D, denotes
the Fréchet derivative with respect to ¢. Approximations are defined

by introducing a subspace X* C X and an approximating operator
Al € £L(Y; X"). Then we seek ¥" € X" such that

(1.28) FM(\yh) = ¢ + A"G(A, y") =0,

We will assume that there exists another Banach space Z, contained in
Y, with continuous imbedding such that

(1.29) DyG\ ) € L(X;Z), VAEA, WipeX.



688 Hyung-Chun Lee and Soohyun Kim

Concerning the operator A*, we assume the approximation properties

(1.30) lim || (4" - Ay =0 vyeY
and
(1.31) lim || A" = Al 5 =0

Note that (1.29) and (1.31) imply that the operator DyG(\,v) € L(X,
X) is compact. Moreover, (1.31) follows from (1.30) whenever the
imbedding Z C Y is compact.

Now we can state the first result of [7] and [15] that used in the sequel.

THEOREM 1.2. Let X and Y be Banach spaces and A a compact
subset of R. Assume that G is a C? mapping from A x X intoY and that
D2G is bounded on all sets of A x X. (D?G represents second Fréchet
derivative of G). Assume that (1.29)-(1.31) hold and {(\,¥())) : A € A}
is a branch of nonsingular solutions of (1.27). Then, there exists a
neighborhood O of the origin in X and for h < hg small enough, a
unique C? function A € A — ¢Y"(X\) € X" such that {(\,¥"(\)) : A € A}
is a branch of nonsingular solutions of (1.28) and Y*()\) ~ ¥()\) € O for
all A\. Moreover, there exists a constant C > 0, independent of h and A,
such that

(1.32) |20 =9 |[x S C|[ (A" = G bW |y,  VAEA

For the second result, we have to introduce two other Banach spaces
H and W, such that W C X C H, with continuous imbeddings and
assume that

for all w C W the operator D,,G (A, w) may be

(1-33) extended as a linear operator of ﬁ(H } Y),

and the mapping w — DyG(A, w) is continuous from W onto L(H;Y).
We also suppose that

(1.34) lim || A" — 4|y, 5y = 0.
Then we may state the following additional result.

THEOREM 1.3. Assume the hypotheses of Theorem 1.2. and also
assume that (1.33) and (1.34) hold. Assume in addition that
for each X € A,y()\) € W and the function
(1.35) A — () is continuous from A into W
and

(1.36) for each A € A, DyF(X,v())) is an isomorphism of H.
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Then, for h < hy, sufficiently small, there exists a constant C, indepen-
dent of h and A, such that

(1.37) | wh oV

< C|| (A" = AGN YN || + | ¥ (M) — VAe A

5

2. Finite element approximation and error estimates

In this section we investigate a finite element discretization of the
optimality system and an estimation of the approximation error. First
we choose a family of the finite dimensional subspaces V* ¢ H! (Q), Sh e
L2(Q). We let VI = VAN H}(Q), V! = VN H(Q), and SE = S" N
L(Q). Let O" = V*|p,. For all ch01ces of conforming finite element
spaces, we then have and O" € H™2(T',). Next, let N* = V'|1 . Again,
for all choices of conforming finite element spaces V" we have that N* ¢
HY(T,). These families are parameterized by a parameter h that tends
to zero; commonly, h is chosen to be some measure of the grid size.
These finite-dimensional function spaces are defined on an approximate
domain . For simplicity we will state our results in this section by
assuming 2 = 2. We assume that these finite element spaces satisfy
the following approximation properties: there exist an integer k& and a
constant C, independent of h,

(2.1)

Vhlél{/h || v—vh “Hl(ﬂ) < Chm|| v HHmH(Q) vv e H™(Q), 1 < m < k,

(2.2) q}}ggh ” q— qh HLz(Q) < Chm” q ||Hm(ﬂ) Vge H™(Q), 1 <m <k,
(2.3)
Auf, IT =T [ a iy € CH™(| T | gmra () VT € H™HQ), L < m <k,
thié‘(f)h It - t* HH 3(T,) < Chm¢ ”H'"—%(Fr)
(2.4) Vte H™2(T,), 1 < m <k,
it o= 0 r, < CH gl i,

(2.5) Vge H'(T,),1<m<k 0<s<1.
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Here we may choose any pair of subspaces V7, V* and S* such that Vg
V" and S} can be used for finding finite element approximations of so-
lutions of Boussinesq equations. Thus, we make the following standard
assumptions, which are exactly those employed in well-known finite el-
ement methods for the Navier-Stokes equations. Next, we assume the
inf-sup condition: there exists a constant C, independent of h, such that
h h
(2.6) inf sup o(v’,¢") >C.
0£gh€SE opvhevh [ vk ”HI(Q)“ " ||L2(Q)

This condition assures the stability of finite element discretizations of the
Navier-Stokes equations and also that of the optimality system (1.25)-
(1.26). The reference [9], [15]-[25], [27], [28] may also be consulted for
a catalogue of finite element subspaces that meet the requirements of
the above approximation properties and the inf-sup condition. Once the
approximating subspaces have been chosen, we seek (u”,p” T" th, &",
", 6" Th gh) € VI x Sk x VP x OF x VI x S& x VP x O x N" by
solving the discrete optimality system of equations.
(2.7)
( VaO(uh7 Vh) + bO(uh7 uh>vh) + c(vh,p) - (Thg7 vh)
= (f,v") Wh e V§,
{ c(u”,¢") =0 vq¢" e S,
a1 (T", ") + by(uh, T S — (t", 8M)r, = (Q,S") VS" e V!,
(T 9", = (6", 9", = (h¢™)r, " e O,
(2.8)
(vao(w",€") + bo(w", u”, ) + bo(u®, w", €*) + c(w", 9")

= (u" - U,wh) — by (wh,T" ") vwh e Vh,
c(€,ry =0 vrhe Sk,
a1(8", ") + bi(u, o, 0") + (", M), = (P, €") V" e VP,
0", x")rp, =0 vx" €O,

-

1
| (Vsg", V"), + (6", M)r, = g(Th,zh)n vzt e N,

We concern ourselves with questions related to the accuracy of finite
element approximations in this section. The error estimate makes use
of the results of [7] and [15] concerning the approximation of a class of
nonlinear problems.
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We begin by recasting the optimality system (1.25)-(1.26) and its
discretization (2.7)-(2.8) into a form that fits into the framework. Let
A= %; thus A is the Reynolds number. Let

X = HA(Q) x L3(Q) x HY(Q) x H™2(T,) x H}()
x L2(Q) x HYQ) x H™2(T'p) x HY(T,),
Y=H1xHI1xH!'xHxH2(I,),
Z = L2(Q) x L2(Q) x L2(Q) x L2(Q) x L¥(T,),
XM= VEx St x Vhx O" x VB x S8 x V* x O x N*.

Note that Z C Y with a compact imbedding. Let the operator A €
L(Y : X) be defined as the following:

A(E,Q,n,P,0) =(u,pTt§6,0,7,9) € X ifand only if

29) vag(u,v) +c(v,p) = (E,v) Vv e HY(Q),
' c(u,q) =0 Yq € L%(Q),
(2.10) {a1(T, S) = (¢, S)r, =(Q,S) VS e Hl(Q),
' (T,29)rp = (0, 9)r, Vo€ H (Tp),

(2.11) vag(w,€) + c(w,¢) = (n,w)  Vw € Hy(Q),
’ cl&,r)=0  Vre LiQ),

(2.12) { a1(8,9) + (1,0)r, = (P,o) Vo€ H'(D),
' @,X)r, =0  Vx € L(T,),
(2.13) (Vsg,Vs2)r, + (9, 2)r, = %(T, 2, Vze HY(T,).

Note that the system is weakly coupled. Analogously, the operator A* €
L(Y : X) be defined as the following:
AME, Q,n, P,O) = (uh,ph, T th &" ¢" 6, 7", g") € X" if and only if

vag(u®, v*) + c(vh p") = (E,v")  whe Vi
.14
(219 { (" =0 Vg"esh
(215) a(Th, 8" - (th, M, = (@, 8" vstevh
' (T ¥")r, = (0,¢M)r, Vot € O
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(2.16) vag(w”, &™) + c(w, ¢") = (n,w")  wWhe Vi
' c(ﬁh,rh) =0 ‘v’qh € Sg

(217) a1(0%, ") + (7", "), = (Po") Ve Vh
' 0" x"r, =0  vxPeO"

1
(2.18) (Vsg", VM + (g%, 2P, = g('rh, M. vz € N,
This system is weakly coupled in the same sense as the system (2.9)-
(2.13).

Let A denote a compact subset of R. Next we define the nonlinear
mapping G : A x X — Y as follows: G(\,(u,p,T,t,&,¢,0,7,9)) =
(E,Q,n, P,8)for A € A, (u,p,T,t,§, ¢,0,7,9) € X and (E,Q,n, P,0) €
Y if and only if

2.19
( ( ) (2,v) = Abg(u,u,v) — \(Tg,v) — A(f,v) Vv eHQ)
(Q,8) = \b1(u,T,S) VS e H (Q)
(©,¥)r, = A, Y)r, — Mg, ¥)r, W € H3(Tp)
(n,w) = Abp(w,u, &) + Abo(u, w, &) — Abi(w,T,6) — (u—U,w)
vw € H(Q)
L (Pp) =2i(u,0,0) — Xp,g &) Ve e H(Q)
It is easily seen that the optimality system (1.25)-(1.26) is equivalent

-

to

(2'20) (u,p’ T’ t’ £’ ¢’ 0, T? g) + AG(A, (u7 p’ T? t? £’ ¢, 07 T? g)) = 0
and that the discrete optimality system (2.7)-(2.8) is equivalent to
(u,p", T, 1", &%, 9", 6, 7%, g™)

+ AG(A, (u",p", T, ", &%, ¢, 6", 7", g")) = 0.

Thus we have recast our continuous and discrete optimality problems
into a form that enables us to apply Theorem 1.2 and 1.3.

(2.21)

REMARK 1. It can be shown that for almost all values of Reynolds
number, i.e, for almost all data and values of the viscosity v, the op-
timality system (1.25)-(1.26), or equation of (2.20), is nonsingular, i.e.,
is locally unique. Thus, it is reasonable to assume that the optimality
system has branches of nonsingular solutions. In order to apply the
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previous theorems, we need to estimate the approximation properties of
operator A"

PROPOSITION 2.1. The problem (2.9)-(2.13) has a unique solution
belonging to X. Assume that the finite element spaces V§ and Si
satisfy (2.1)-(2.2) and (2.6) and the finite element spaces V! O" N"
satisfy (2.3)-(2.5). Then, the problem (2.14)-(2.18) has a unique so-

éh, J;h,éh,%h,gh) denote the solution of (2.9)-(2.13) and (2.14)-(2.18),
respectively. Then we also have that
(222) [[8— 0" |lggigqy + 15— 5" 2y + 1 T = T [l (g
. 5 zh T
=P gy 118 & ey +119 = 9" 2y
+||6-6" ”Hl(Q) +| 7 - HH—{;@r) +5-3" |lH1(Fr)
If, in addition,
(0,,7T,1,€,4,0,7,3)
€ HPL(Q) x H™ N LE(Q) x H™(Q) x H™Q) N LE(Q) x HF+1(Q)
x H™ N LA(Q) x H™H(Q) x H™(Q) N L3(Q) x HY(T,),
then there exists a constant C, independent of h, such that
18— 8"l gy + 15 = 5" oy + 1 7= T" | g1
.. < zh Tz
=Pl gy 16 € ey + 116 = " |2
(2.23) + || 60" ”Hl(ﬂ) + H -7 ”H—%(Fr) + ” g-g" ”Hl(Fr)
< Cr™ (” u ”Hm+1(n) + ”5|le(9) + ” T ||Hm+1(ﬂ)

+]|& ||Hm+1(Q) +|¢ ”Hm(ﬂ) +] éHHmH(Q)) '

Proof. First, it is well known [7] that the two Stokes problems (2.9)
and (2.11) have a unique solution (11, 5) and (€, ¢) belonging to H}(£2) x
L3(Q), respectively. Also, the discrete Stokes problems (2.14) and (2.16)
have a unique solution (@*, ") and (Eh, #") belonging to VI x Sk, re-
spectively. Moreover, we have that

8- " ||H1(Q) +||5 A HL2(Q) —0
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and .
€€ ”Hl(n) +] ¢ “L2(Q) —0

as b — 0, and if in addition, (&,5) € Hg*'(2) x H™ N L§(Q) and
(€,4) € HF*H(Q) x H™ N L3(9), we have that

|8~ 8" ||gi ) + |15~ 8" || 12y < CH™ (ll 8| gy + [| 7 ”Hm(n))

and
~ ..,h ~ ~ m ~ ~
1€ =& llgs iy + 116 = 3 20y < CF™ (| € llgmrngay + 1 8l smcey) -

Next, it is also well known that the two second order elliptic problems
(2.10) and (2.12) have a unique solution (T,%) and (8,7) belonging to
HY(Q)xH -2 (T'p), respectively. From the Babuska’s theory, the discrete
second order elliptic problems (2.15) and (2.17) have a unique solution
(T",#") and (9", 7") belonging to V* x O, respectively. Moreover, we
have that

(2.24) IT =T || gy + | £~ 2 “H”%(Fr) =90
and
(225) 0=y + 7= gy, 0 &5 B0,

and if in addition (T, %) € H™1(Q)x H™ 3 (T,) and (§,7) € H™+(Q)
Hm‘%(I‘r), we have that

226) [T~ T |guqy + [~ 2] ™| T gy

1 <
H™2(T,) —

< . . ~
(2.27) ” -0 ||H1(Q) + ” ToT “H—%(I‘T) < Chm” 9 HHm+1(Q)'
Note that the problem (2.13) is a well-known second-order elliptic prob-
lem. Thus, we have that the problems (2.13) and (2.18) both have unique
solutions and that

228 |3 lamey < Nl gty < I8 ey

(2.29)

13- iy <€ (13- 3" e,y + 17 =P -3 r,,) V8" €N
Using (2.5), (2.24) and (2.25), we have that

(2.30) 153" lg1,y =0 as h—0,
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and using (2.5), (2.26) and (2.27), we conclude that
(2.31) ” 9- gh ”Hl(n) < Chm” é”HmH(Q)'
O

THEOREM 2.2. Assume that A is a compact interval of R, and that
there exists a branch {(A,¢¥()\) = (u,p,T,t,&,6,0,7,9)) € A x X} of
nonsingular solutions of the optimality system (1.25)-(1.26). Assume
that the finite elements spaces V", S(’}, Oh, Vh, N" satisfy the condi-
tions (2.1)-(2.5) and the finite elements spaces V", St satisfy the inf-
sup condition (2.6). Then, there exists a neighborhood O of the origin
in X and, for h < hg, small enough, a unique branch {(\,y"()\) :=
(uh,ph,Th,th,ﬁh,¢h,0h,7'h,gh)) € A x X"} of solutions of the discrete
optimality system (2.7)-(2.8) such that ¥"(\) —¥()) € O for all A € A.
Moreover,

(2.32)
9" ) =) |l

= || — " [lgga 0y + 15— 5" | gy + |1 T = T* | g
oo .  zh 77
+[[ i -3y + 16 =& sy + 118 = 6" [l 2y
0= ey 17 =7 b,y + 138" e,y — 0

as h — 0, uniformly in X\ € A. If, in addition, (&,p,T,1,€,,0,7,5) €
H™1(Q) x H™ 1 L3(Q) x HM(Q) x H™3(Tp) x H™(Q) x H™ N
L2(Q) x H™(Q) x H™2(T'p) x HY(T') for A € A, then there exists a
constant C, independent of h, such that

[ = &" [l ) + 15— 8" [l oy + |1 T = T || g
= a o, 1€ € gy + 16— 8 2y
(2.33) +[l6-6" “Hl(Q) + | 77 ”H‘%(Fr) +a-3" [P
< W™ (11 lggmss gy + 18 1Ly + 1 g

+]|& [ egms1gay + |l ¢ gy + | 6 ||Hm+1(ﬂ)>
uniformly in A € A.

Proof. Clearly, G is a C* polynomial map from A x X into Y.
Therefore, using (1.6)-(1.8), (1.11), and (1.13), it is easily shown that
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D?G(), ") is bounded on all bounded sets of X. Now, given (u,p,T,t,£,

$,0,7,9) € X, a direct computation yields that (é, Q,7,P,0) € Y sat-
isfies

(éaQ~>ﬁaP7 ) = DQ,I)G()H (uapa Tat7€7 ¢a 0, 7, g))(ﬁaﬁy Ta E)E)Q—S’ 0—,7_35—7)

for (u,p,T,%,€,¢,0,7,3) € X if and only if

<é7 V> bO(u’ u, V) + bﬂ(ﬁ9 u, V) - (Tg, V) Vv e H(l)(Q)
<QaS> = bl(ﬁ)Tas)+bl(u7T’S) VSEHI(Q)
(ﬁa W) = bo(W, Q, 5) + bo(W, u, E) ’+ bO(ﬁ7 w, 5) + bO(u’ w, E)

—by(w,T,0) —by(w,T,0) Yw e HLQ)
(P,o) = bi(@,,9)+b1(u,4,9) — ($,)r, — (vg,&) YpecH(Q)
5 1
<0a1/}> = -(.67 1/’)1“r V¢ € H2(FD)
Thus, it follows from (1.6)-(1.8), (1.11), and (1.13) that DyG(A, (u,p, T,
t,€,6,0,7,9)) € L(X,Y). On the other hand, since (u,p,T,t,§,¢,0,7,9)
€ X and (4,p, T,%,§,4,6,7,3) € X, by the Sobolev imbedding theo-
rem, T,0,T,0 € L2(Q),u,£,1,€ € Lﬁ(g) and g;% gz_vj g;] g—;] € L3(Q)
for j = 1,2. Then it follows that (=,Q,7,P,08) € Z and that for
(u’p’T?t’ﬁ’ ¢70’T’ g) E X’
D’IIJG()‘, (uap: T7 t, 5’ d)v 0, T, g)) € L(X’ Z)

Next, we turn to the approximation properties of the operator T. From
Proposition 2.1, we have that (1.30) holds. Since the imbedding of Z
into Y is compact, (1.31) follows from (1.30), and the (2.32) follows from

Theorem 1.2. Also from Proposition 2.1, we may conclude that there
exists a constant C, independent of A, such that

(T = TG, () |«
< OW™ (|0 llggmerey + 12 | ey
T [l gy + 1€ legmry + 1 ey + 18l rmencay) -
Then (2.33) follows from Theorem 1.2. O

Now, using Theorem 1.3. we derive an estimate for the error of u”
and &", T" 0" g" in the L?-norm. Since G(X\,9¥())) does not depend on
p,t, T, or ¢, we redefine X = H1(Q) x H}(Q) x HY(Q) x H(Q) x H(T,)
and X" = VP x VR x Vh x Vh x NP Y and Z remain as before.
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THEOREM 2.3. Assume the hypotheses of Theorem 2.2. Then
exists a constant C, independent of h such that

|u* -0 ||L2(Q) +|Th-T ”L?(Q) +| 6" -0 ”L2(9) + " -4
< Chm+% (“ u()‘) ||Hm+l(Q) + Hp()\) “Hm(ﬂ) + “ T()‘) “Hm+1(Q)
HEO) flmes gy + 19O Ly + 1180 [lgmray) -

Proof. We must verify that (1.33)-(1.36) hold in our setting;
the approximation properties (2.1) and the results of Theorem 1.

Theorem 2.2 easily lead to the conclusion. In similar methods with
we can verify (1.33)-(1.36).

REMARK 2. By other means, it can be shown [29] that actually
19" = Ullgeig) + 1 7" = Tl 2y + 116" = & llpay + 116" -0
< Cpmt (” u(}) “Hm+1(Q) +{[p(A) ”Hm(Q) +[IT) “Hm+1(Q)

+[| €0 “Hm+1(Q) +] ¢ HHm(Q) +116()) HH’”“(Q)) ’

3. Numerical algorithm

In this section we present a computational algorithm using a si
gradient method. The optimal control problem (1.20)-(1.24) is eq
lent to the following minimization problem: Find g € H(T,) such

K(g) := J(u(g),p(g9),T(g),9) is minimized where (u(g),p(g), T(¢
is defined as the solution of (1.15)-(1.19).
The classical simple gradient algorithm proceeds as follow:

Given g(O);
p dK(g™)

(n+1) _ L) _
(3.1) define g g 5 dg®

recursively,
where £ is a step size.
Let g be a solution of the minimization problem ming K(g). Th

(3.2) dK(9) _ dT(u(9),p(9).T(9),9) _

dg dg 0
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For each fixed g, the derivative %;g) - z for every direction z € H(T',)
may be easily computed

dK(g)

(33) =5

-2=0(Vg,V2)r, +6(9,2) + (u—U,u) Vze HY(T,),

where for each z € HY(T,), @ € H}(Q) is the solution of

34

E/ao()ﬁ, v) + bo(,u, v) + bo(@, @, v) + c(v,p) = (Tg,v) Vv € HY(Q)
(3.5) c(,g) =0 VqeLiQ)

(3.6) a1(T,5) + b1 (4, T, 8) +by(u,T,8) =0 VS e H5H(Q)
(3.7) T=z2 on I, T=h on Iy,

Let (u,p, T,t) € H{(Q) x L&) x HY(Q) x H‘%(I‘r) be the solution
of (1.15)-(1.19) and let (£, ¢,6,7) € H}(Q) x L2(Q) x HY(Q) x H~3(T})
be defined as the solution of the adjoint problem

vag(§, w) + bo(u, w,§) + c(w, ¢)

(3.8) =(u—-U,w)—b(w,T,0) VYw € H}(Q)

(3.9) c(&,7) =0 Vre L3(Q)

(3.10)  ai(8,¢) +b1(u,9,0) + (T, 9)r, = (€,80) Vo € HH(Q)
(3.11) (8, %)r, =0 ¥x € H %(T'p)

Setting (v,¢,5) = (£,¢,0) in (3.4)-(3.7) and (w,r,¢) = (8,5,T) in
(3.8)-(3.11), we have that

(3.12) (r,2)r, = (u— U, a).

Thus, from the necessary condition (3.2), we see that optimal value of
the control g satisfies

(vg7 VZ)[‘T + (ga Z)l"r = (T’ z)r‘r Vz € HI(FT)

S| =
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Collecting the above results, we may also obtain the optimality system

(3.13)

([ vag(u,v) + bo(u, u, v) + c(v,p) = (Tg,v) + (f,v) vv € H (D)
)=0 VgeL3(Q)
a1(T,S) + by(u,T,8) — (t,9)r, = (Q,S) VS € H}(N)
T=h only (T,R)r, =(g9,R)r VRGH"(I‘T)

{ vap(&,w) + bo(u, w,€) + c(w, ¢)
=(u-U,w)—-bh(w,T,0) vw € H3(Q)
c(§,r)=0 Vr e L3(Q)
a1(8,¢) + b1(w,¢,0) + (1,0)r, = (€-8,0) Vo€ Hz )
{ (0, x)r, =0  ¥x€H %(Tp)

C(ua q -

T

From (3.12) and the definition of 7, for fixed g, the derivative d’g gg)
may be computed

%é"—) = —86,Asg + 629+ VO™ . n|p, .

Here, 41 and 42 are used to change the relative importance of the two
terms appearing in the definition %;g—) and § will be the maximum of
51 and (52.

Thus, (3.1) may be replaced by

for n=0,1,2,...,

set g(n+1) (n) 5( 610 g(n) + 529(71) + vg( n|1"r)
_ 02\ () . 91 A () Popn)
- (1 pé)g +p5Bsg™ + 50 i,

where 6(™) is determined from ¢(™ through the relations

3.1 a1(T™, 8) + by (™D, 7M™ ) =(Q,S) VS e H(Q)
. T =g Yonr,, TMW=honTy,
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vag(u™,v) + b(u™, u v) + (v, p™) — (T™g, v)
(3.15) = (f,v) WvecH}Q)
c(u™,q) =0 Vqe L§(Q)

5.16) {al(é’(”’,so) + b1 (u™, 0, 0M) = (pg, V) vy e HY(Q)

g™ =0 onT,
ag(w, &™) + bo(w, u™, ™) + bo(u™, w, ) + c(w, o)
(3.17) = (u™ — U, w) - by(w,T™, 00 vw e H)(Q)

(€™, r) =0 Vre L3(9).

The optimality system of equations (2.7)-(2.8) consists of three groups of
equations: the state equations for (u,p, T), the adjoint state equations
for (§,¢,0), and the optimality condition for g. We may construct an
iterative method, i.e., to iterate among the three groups of equations
so that at each iteration we are dealing with a smaller size system of
equations, besides, (u™, p(™) and (5(“),¢(")) are solved with T(™ and
9™ computed from the heat equations with u~1 and E("_l) at each
state equations, respectively.
A simple gradient method is given by follows

1. choose an initial guess g(o);
2. for each n > 1,
(a) solve for (u®™, p(™, T(M) from the state equation with g(»~1)

(3.18) {‘“(T(n)’s) +b (D, T, 5) = (Q,5) VS e H'()
T™ =g"Yonl,, TMW=honTy,
vag(u®™, v) + bo(u™, u™,v) + e(v,p™) - (Tg,v)
(3.19) =(f,v) VveH})
c(u™,q) =0 Vqe L3(9),

(b) solve for (£, ¢ 9™ from the adjoint state equation with
(u™, pm, ()

(3.20) a1(0™, @) + b (u™, p,0M) = (pg, V) Ve HY(Q)
. 9" =0 onI'p
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ao(w, €™) + bo(w,ul™, M) + by(u™, w, €™ + c(w, ¢(™)
(3.21) =™ —U,w) — by (w, T™ ) vw e H}(Q)
(™ ) =0  vreLiQ),

(c) solve for g™ from the optimality condition

(3.22) g™ = (1 - p%"‘) g™ 4 p%Asg("‘l) + gvew ‘n|p,.
The convergence of the algorithm (3.18)-(3.22) is a direct consequence
of the following lemma.

LeMMA 3.1. Let K be a real-valued functional on a Hilbert space X
with norm || - |x and scalar product (-,-)x. Suppose that there exist
two constants m and M such that

(i) K has a local minimum at a point X is of class C? in an open ball
B centered at x.

(i) Vue B,  V(z,y) € X x X,K"(u) - (z,y) < Mllz|lx]lyly,

(iii) Vu € B, vz € X,K"(u) - (z,z) > m| z|%.

Let R denotes the Riesz map, i.e. (f,z) = (Rf,z)x forallz € X
and all f € X*. Choose (%) € B and choose a sequence {p,} such that
0 < pu < pn < p* < 2m/M?. Then, the sequence {z(™} defined by

m(n) — :L,(n—l) _ anK:,(.’L'(n_l)) for n=12,...,

converges to X. Furthermore, if B = X and X is a global minimum, then

the gradient algorithm converges to X for any initial value (9.

Proof. See. e.g.,[8]. O

THEOREM 3.2. Let (u(”),p("),T("),E(n),d)("),9("),9(")) be the solu-
tion of (3.14)-(3.17) and (u,p, T, €, ¢, 0, g) the solution of (3.13). Then, if
§ is sufficiently large, g™ — g and thus, (u(, p(™ TM) £ 4n) g(n))
— (u,p, T, &, ¢,0) in H{() x LE(Q) x H}(2) x H{(2) x L&(Q) x HA ()
asn — oo.

Proof. In (3.14)-(3.17), we have the fixed parameter p = . For
each g € HY(T,), the second Ffechet-derivative K"(g) - (z,w) may be
computed by K"(g) - (z,w) = §(Vw,V2)r, + 6(w,z) + (@,1), where
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i € H(Q), and @ € HY(Q) are the solutions of

(3.23)
( Va/O(ﬁ7 V) + bO(ﬁa u, V) + bO(ﬁ> ﬁv V) + bO(ﬁ7 a, V) + bO(u> ﬁ> V)

+e(v,p) = (Tg,v) Vv eHy(Q)

c(l,g) =0 VgeL§(Q)

a1(T,S) + b1(§, T, S) + by (0, T, S) + by (0, T, S)
+b(u,T,8) =0 VS e Hh()

T=w on I, T=h on I'y,

and of
( vao(@,v) + bo(Q,u,v) + bo(Q, @, v) + ¢(v, )
= (Tg,v) YveH(Q)

(3.24) ¢ c(i,q) =0 VYqe Li(Q)
a1 (T, S) +b1(4, T, 8) + b1(u,T,8) =0 VS € H5(Q)
T=z onl, T=h onTy

\
One can easily have that ||t || < C||w||y,r, and || @ || < C|| 2 |l1,r,., where
the value of the constant C' depends only on 2. Then,

K'(g) - (zw) < dllwlr.lzlr, +Cllallal
< Sllwlarell 2l + Cllwllurell 2 llue.
0+ ONwllurll z e,

and
K@) (5w) =3l 2 p, + [ fad > o) 2 .

Setting M = k6 + C and m = §, we have, if § > (—\/%1),12\4—7% >p=1
The other hypotheses of Lemma 3.1 are easily shown to be valid. Hence,
from that lemma we obtain that ¢ — g in H NT,) as n — co. The
desired convergence results follow from the a priori estimate in ([30],
Proposition 2.3) O

Now we discuss the numerical solution of the optimal control problem.
To carry out the computation we discretized the problem using the finite
element method. We use the Taylor-Hood finite element, that is, the
piecewise quadratic element for the velocity and the temperature and
bilinear element for the pressure defined on a triangle mesh. We use the
mesh size h = 1/16 for all computations.
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Since the equations (3.15) are nonlinear, we use the Newton’s method
based on exact Jacobian. Let us denote the finite element spaces by
Vi c H}(Q), VP ¢ HY(Q), and W c L3(Q) for velocity, temperature,
and pressure, respectively. The approximate problem for (3.14)-(3.17)
is given as follows:

1. initialize (u®,p%, 7°,£°, ¢°, 49, ¢°);

2. for each n = 1,2,..., solve the state equations using previous
solution (u(»~1), g(n=1)).
(a) find T € VP such that

a1 (T™, 8% + by (™D, 7™ sty = (@, 5" vsh e v
{ T™ =g Donl,, T® =honTy,
(b) find (u™,p(™) € V* x W" such that
ao(u™, vh) + bo(u™D u™ hy 4 po(u — (=D =1 by
+c(vh, p™) — (TMg, vh) = (£,.vF) wh e V!
c(u("),qh) =0 Vq¢"ewh,

3. solve adjoint equations using previous solution (u("), T ¢ ("“1));
(a) find 60" € VP such that

a1(0), ") + by (u™, ", 60 = (ohg, D) wph e VI
{ 0™ =0 onlp,
(b) find (¢, 4(™) € V* x W" such that
ag(w", €™) + bo(w", ul™, £) + by (u™, wh, ) + c(wh, ™)
= ™ - U, wh) — by (wh, T™ ™) ywh e Vh
c(ﬁ("),rh) =0 vrt e wh,
4. find g™ such that

0 o
g™ = (1 - pf)g("‘” +p s Bag™ Y + gw(n) -mlr,.

At each Newton'’s iteration, we solve the linear system of equations by
Gaussian eliminations for banded matrices. Since quadratic convergence
of Newton’s method is valid only within a contraction ball, we normally
first perform a few(usually 3 or 4 times) simple successive iterations and
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then switch to the Newton’s method. The simple successive iterations
are defined by

aO(u(n)a Vh) + bO(u(n_l)a u(n), Vh) + c(vh7p) - (T(n)g7 vh)
= (f,vh) wheVh
c(u("), M =0 vg"ewh

In the case of the uncontrolled Navier-Stokes equations, the solution is
unique for a small Reynold number and the simple successive approxi-
mations converges globally and linearly. (See [16])

In the same way, one can study the optimal control problems for the
functionals (1.3) and (1.4) with the same Dirichlet boundary tempera-
ture control.

To decide p, we let p = 1 and choose the prescribed tolerance 7 and
perform the following steps in each iteration k =1, ...,

1. if K(k) > K(k — 1), set p = .5p and go to the beginning of the

iterations; otherwise, go to next step;

2. if |[K(k) — K(k — 1)|/|K(k)| > T, set p = 1.5p and go to beginning

of the iterations; otherwise, stop.

4. Computational results

In this section we test three examples involving the functionals (1.3)-
(1.5) with Dirichlet boundary temperature controls using the simple
gradient algorithm studied in section 3. Let us consider that the domain
€ is the unit square (0,1)x (0,1) € R%. Let I'; = 0x(0,1), T, = 1x(0, 1),
'y = (0,1) x 0, and I’y = (0,1) x 1. The state variables satisfies the
following Boussinesque equations:

(4.1) —Au+(u-Viu+Vp=Tg in Q
(4.2) Vou=0 in Q
(4.3) -AT+(u-V)T'=0 in Q

In our computation, we take the Reynolds number to be 1(v = 1), the
thermal conductivity k = 1, body force f = (0,0)7.

4.1. The velocity matching problem

Let us consider the following problem: minimize

1 ) o
(44) T(u,p,T,g) = > / - UPdx+ 2 / Vg Pds + 2 / lgl2ds.
2 Jo 2 Jr, 2 Jr,
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TABLE 1. |u — U|| with Dirichlet boundary control g
([lu—=U| = 1.3106E-03 without control )

3 10-° 10°° 1077 10°F
32=0,061=20 1.2239E-03 | 4.5733E-04 | 2.1447E-04 | 1.9509E-05
S =0,=0 1.0179E-03 | 1.0405E-03 | 3.6571E-04 | 1.8564E-05
5 =0,0,=0 7.6038E-04 | 2.0532E-04 | 4.4535E-05 | 8.2875E-06
8 =0, x 10~ 1, 8, = & | 8.2240E-04 | 3.7175E-04 | 3.6571E-04 | 4.1400E-06
8) = 05 x 10~ 2, 8, = & | 7.4068E-04 | 2.0324E-04 | 4.0100E-05 | 6.6839E-06
e e e e e -]
> 1977 i
‘ s | Wf e = \\\\\‘
SERRE " \\\\’\\’gj_‘ I
'y it
i A e

o ' ' “ Voo r ot/
e
Ve =

FIGURE 1. Desired temperature field(left) and velocity

field(right)

TABLE 2. |V X u|| with Dirichlet boundary control g
(|| V xul =1.0111F — 02 without control)

) 10—° 10~-° 10~7 1078
0;=0,0=4¢ 2.2333E-03 | 1.9230E-03 | 1.5705E-03 | 1.4628E-03
d1=0,=4¢ 2.1968E-03 | 1.9270E-03 | 1.5709E-03 | 1.4631E-03
61=0,8 =9 1.5964E-03 | 1.4028E-03 | 1.3568E-03 | 1.3516E-03
01 =8y x 1071, 8, = § | 1.6797E-03 | 1.5748E-03 | 1.4641E-03 | 1.3841E-03
81 =82 x 1072, 8 = § | 1.6400E-03 | 1.4764E-03 | 1.3810E-03 | 1.3514E-03
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Temperatwre

F1GURE 2. Uncontrolled temperature field(left) and ve-

locity field(right)

Y
e

&

FIGURE 3. Velocity fields with § = dy = 1075,6; = &3 x
10~2(left) and 6 = d; = 1076, §; = d5 x 10~?(right)

subject to the equations (4.1)-(4.3) with boundary conditions

u=0 on 09,

and
T=y

g% = cos(mx) cos(my) on TpUTY,
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W= ==
N L S Yy |
Sl Rl
"= = ==
R RN
th &’6’\‘;\:}53;;»3,/ /A0 ‘;M\L/‘;\E SIEILI
lf~{\::1::‘}:—:.-:-;—_:—:—:*,*é? t‘%‘}\:tiiiiiiii’?_/’

FIGURE 4. Velocity fields with § = 63 = 1077, = §a X
1072(left) and § = 6 = 1078, §; = 65 x 107 %(right)

1

2] R

0.8

Boundary Condition
o o o © = o
[ @ Y & > =N
T T T T T

e

o

s *
0 05 1
ylr=1)

FIGURE 5. Boundary controls on I'y, §o = 4, §; = 2 x 1072

Here the desired velocity U satisfies the equations (4.1)-(4.3) with the
same data as chosen previously and with the additional boundary condi-
tion T = 1—y on I',. We plot the desired velocity field in Figure 1(right)
and corresponding temperature field(left). We want to match the veloc-
ity field u with this U by adjusting the temperature on the boundary I',.
When g = 0 we say that this problem is an uncontrolled problem. The
numerical solution of the uncontrolled problem is shown in Figure 2.
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FIGURE 6. Uncontrolled temperature field(left) and ve-
locity field(right)

nost N NS /.////,'—
B e = P

FIGURE 7. Velocity fields with § = 6; = 62 = 10_5(left),
10~5(right)

As shown in Table 1, the smaller § is, the smaller the L? distance of u
and U is. The optimal velocity fields u are given in Figure 3 and Figure 4
with various values of 4, 61, d2. From these figures we can easily check the
problem is well controlled by using the method described before with the
chosen data. In Figure 5, we plot the approximate optimal controls g”
on the boundary I',. It is more effective including the surface gradient
of boundary control g in the cost functional, especially in this case, with
0o =46, 01 =y X 10~2.
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FIGURE 8. Velocity fields with § = &; = 6, = 1077 (left),
10~8(right)
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FIGURE 9. Boundary controls on I';, § = é; = §»(right)

4.2. The vorticity minimization problem

Let us consider the vorticity minimization problem. The cost func-
tional is the following

1 ) ]
@5) J(upTg)= 5 [ (Vxufdx+ S [ VagPds+ 3 [ lods
0 r, %
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TABLE 3. ||T — T4|| with Dirichlet boundary control g
(|T —T4|| = 1.0810F — 01 without control)

] 103 10~ 10-° 107°
02=0,0,=0 6.1527E-02 | 3.6424E-02 | 1.9880E-02 | 1.2322E-02
01 =0,=246 6.2822E-02 | 3.6723E-02 | 2.1981E-02 | 1.2764E-02
01=0,00=0 3.4562E-02 | 3.4250E-02 | 1.4495E-02 | 1.4472E-02
61 =0 x 1071, 6 = § | 3.9235E-02 | 3.6723E-02 | 1.2956E-02 | 1.4175E-02
61 =8 x 1072, 6 = § | 2.8527E-02 | 3.6723E-02 | 1.4173E-02 | 1.4448E-02

Q 05 1
x

FIGURE 10. Temperature surface plot(left) and contour
plot(right) for the uncontrolled prblem

and the state variables satisfy the equations (4.1)-(4.3) with the bound-
ary conditions u = 0 on 012, g% =0onlWUly,/ T=yonI, T =g,
on I',.. The uncontrolled solution of this problem is plotted in Figure 6.
Table 2 shows that the vorticity of u decreases as 6 goes to 0 and §;
is much smaller than §; when d3 = é is fixed. We achieved a reduction
of 86.6% in the L? norm of the velocity when 6; = 0, 6 = § = 1078,
Figure 7 and 8 give the controlled velocity fields u* with various values
of . We plot the optimal boundary controls in Figure 9(right). As
expected, we can see the vorticity reduces when the temperature field is
flat in Figure 9(left).
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FIGURE 11. Temperature surface plot(left) and contour
plot(right) 6 =0y = 1079 and 01 = 03 X 101

1 T —G
xi0?

Temperature

FiGure 12. Adjoint temperature surface plot and con-
tour plot with 6 = 8 = 1075 and §; = d, x 107!

4.3. The temperature matching problem

Let us counsider the minimization problem involving the cost func-
tional (1.5). The cost functional is the following

1 ) )
(46) J(w,pT,g) = = / (T~ TyPdx+ 5L / IV og[2ds + 2 / lgf2ds.
2 Jr. 2 Jr, 2 Jr

and the boundary conditions are u = (4y(1 — y),0) on I';, u = 0 on
T,ulr; U, ‘g—g =0onTpUl,, T =4y(l—-y)on T}, T =g, on ;. The
numerical solution of the uncontrolled problem is shown in Figure 10,
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FIGURE 13. Optimal boundary controls on I'.(left) and
temperature distributions on I,

in which one can see that the temperature is distributed from 0 to 0.4.
One can choose any reasonable desired temperature T, but we choose
the parameter Ty=0.2 which is the average temperature on I'r. For the
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various choices of the parameter §; and d2 appearing in the functional
(4.6), the computations were performed. We report some numerical
results in Table 3. In Figure 11 and 12, we plot the controlled surface
and contour plots of the temperature T and adjoint state 6 for each
case. In Figure 13, we plot the approximate optimal control g" on the
boundary I't and the temperature distribution on I', with § = d; = da.
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