J. Korean Math. Soc. 41 (2004), No. 4, pp. 747-754

PSEUDO ALMOST PERIODIC SOLUTIONS
FOR DIFFERENTIAL EQUATIONS INVOLVING
REFLECTION OF THE ARGUMENT"

DaxioNG P1ao

ABSTRACT. In this paper we investigate the existence and unique-
ness of almost periodic and pseudo almost periodic solution for non-
linear differential equation with reflection of argument. For the case
of almost periodic forced term , we consider the frequency modules
of the solutions.

1. Introduction

The differential equations involving reflection of argument have ap-
plications in the study of stability of differential-difference equations, see
Sarkovskii [1] , and such equations show very interesting properties by
themselves, so many authors worked on them. Wiener and Afidabizadeh
[2] initiated to study boundary value problems involving reflection of the
argument. Cupta [3, 4] investigated two point boundary value problems
for this kind of equations. Afidabizadeh, Huang, and Wiener [5] studied
the existence of unique bounded solution of

(1.1) &(t) = f(t,z(t), z(—1)).

They proved that x(t) is almost periodic by assuming the existence of
bounded solution x(¢) of (1.1). Our present paper is mainly motivated
by above reference [5] and Zhang [6], and devoted to investigate the
existence and uniqueness of almost periodic and pseudo almost periodic
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solution of the equation
(1.2) &(t) + az(t) + bx(—t) = f(t,z(t),z(—t)),b #0,t € R,

where f(t,z,y) is almost periodic or pseudo almost periodic on ¢ uni-
formly with respect to z and y in any compact subset of R2. Pseudo
almost periodic function (the definition will be given later )is a new
generalization of almost periodic function. It was introduced by Zhang
[7]. In [7], Zhang also discussed it’s applications to some differential
equations. After that some literatures discussed pseudo almost periodic
solutions for various differential equations, for example [6]-[11] .

To do our main business, we need to consider linear differential equa-
tion first

(1.3) z(t) + ax(t) + bx(—t) = g(t),b # 0,t € R,

where g(t) is continuous on R. Let y(t) = z(—t), then (1.3) is changed
into system

(1.4) T =—ax—by+g(t), ¢y=bzx+ay—g(-t),

which is in a Hamilton system in form with Hamiltonian function
1 1
H(z,y,t) = 360 + sby + azy — g(~t)z — g(t)y.

So we may say that some first order scalar differential equations can also
generate Hamilton systems.
To this end, we give some definitions for our business.

DEFINITION 1.1. [12]-[14] A fuction f: R — R is almost periodic ,
if the e—translation of f

T(fie)={r€R:|f(t+7)— f|<eVteR}
is relatively dense in R . We denote the set all such functions by AP(R).

DEFINITION 1.2. [12]-[14] A function F : R x R? — R is almost
periodic for ¢ uniformly on R? , if for any compact W C RZ?, the e~
translation of F

T(F,e, W)={r e R:|F(t+1,z,y)— F(t,z,y)| <¢V(t,z,y) € RxW}

is relatively dense in R . We denote the set of all such functions by
AP(R x R?).
We denote by PAPy(R) the set

{w € C(R): ltigl%/_tt lo(s)|ds = 0} :
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and by PAPy(R x R?) the set
1 t
{cp € C(Rx R?): ltim ﬂ/ le(s, 2, y)|ds = 0,V(z,y) € Q, VO C R2} :
- —t

where () is compact in R2.

DEFINITION 1.3. [6, 7] A function F': R x R? — R is called pseudo
almost periodic for ¢ uniformly on R? if

F=G+@

where G € AP(R x R?),® € PAPy(R x R?). Denote by PAP(R x R?)
the set of all such functions .

2. Main results

Our main results can be stated as follows.

THEOREM 2.1. For any g(t) € PAP(R),)\? = a®> — b*, )\ > 0, Eq.
(2.1) has a unique pseudo almost periodic solution z(t). Furthermore if
g(t) € AP(R), then Eq. (1.3) has a unique almost periodic solution x(t)
and mod (z) = mod (g).

THEOREM 2.2. Suppose f(t,z,y) € PAP(R x R?) and satisfies Lip-
schitz condition

|f(t, 21, 91) — f(t, 22, 92)] < L{|z1 — 22| + |11 — y2)

2
for any (x1,11), (z2,y2) € R?, where L < W_ﬁi\wﬁm,)\? = g2 —

b2, A > 0. Then Eq. (1.1) has a unique pseudo almost periodic solution
z(t).In addition , if f(t,x,y) € AP(Rx R?), then Eq. (1.1) has a unique
almost periodic solution z(t),and mod () = mod (f).

Before proving above two theorems, we state a useful lemma which
can be easily proven.

LEMMA 2.3. If g(t) € AP(R), then g(—t) € AP(R). If g(t) €
PAP(R), then g(—t) € PAP(R). Furthermore if g(t) € AP(R) and
T is an e-translation of g(t), then 7 is also an e-translation of g(—t), and
mod (g(t)) = mod (g(-1)).

We refer the readers to good books [12]-[14] for the basic results on
the almost periodic functions.
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Proof of theorem 2.1. Existence. From Lemma 2 and Lemma 3 of [5],
we can derive

) = - [e” /°°e-*8<(x—a>g(s>+bg<—s))ds]

t

+53 |:e_)\t /_too (A +a)g(s) — bg(¥s))ds]

is a particular solution of Eq.(1.3) for any ¢(t) € PAP(R). Now we
show z(t) € PAP(R). Suppose g(t) = h(t) + ¢(t), h(t) € AP(R), g(t) €
PAPy(R). Let

H(t) = —% [e)‘t /too e (A — a)h(s) + bh(—s))ds]

o [e'” / ;, (A + a)h(s) - bh(—s))ds]

and

o(t) = ——2% [e)‘t /too e (A — a)p(s) + bw(—s))ds]

b [ [ O+ 0ot~ bot-onas|

then z(t) = H(t) + ®(t). For 7 € T(h(t),€), we have

|H(t+7) — H(t)|
}_% [ewm /m e (A — a)h(s) + bh(—s))dé’]

N '2% [e—)‘(t“LT) /_ t: () + a)h(s) — bh(—s))ds]
b3 [ [ (0 - i) + -5

1
o3

[e“)‘t [ too (A + a)h(s) — bh(—s))ds]
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_ ‘_% Utoo =9 ((A — a)h(s + ) + bh(—(s + T))ds}

+% [ /t ” M) (X = a)h(s) + bh(—s))ds]

b | 0O+ ahts 7)o+ )]

(o0}

1 [/_too e/\(s—t)(()\ + a)h(s) — bh(—s))ds]

B ‘ - % /too X [((A —a)(h(s+ 1) — h(s))

b(h(—(s+7) - h(—s))] is

— i/t ex\(t——s)
) .,

+b(h(—(s+7) — h(—s))] ds

+ (A +a)(h(s + 1) — h(s))

1 o0 A 1 t
< —_— (t_s) - o A(S—t)
VA a|+|b|)eds+2)\/_ooe (IX+ a] + [b])eds
< P-al+r+al+2ph

2)2

So H(t) € AP(R), and mod (H) C mod (h).
On the other hand

1 T
Q—T—[—T |®(t)|dt

1 T 00 s
T /_T ‘”/t (1A = alli(s)| + [bllio(—5)))ds

IA

T t
g 2 @A+ alle(s)] + Blle(—s)ds
T s
= ﬁ/_Tds/_TeA(t—s)(l)\—a||(p(s)| + |b]|@(—s)|)dt

1 o T .
+W/T ds/TeA(t )(|>\—a|[90(3)l+lb|l<p(—s)|)dt
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1 Als—1)
+———/ ds/ eI+ allp(s)] + |b]|e(—s)|)dt

1 -T T 3
i | 8 [ @O+ alle@)] + bllo(-))e

For convenience, we denote the last four terms by I1, I2, Is and I4 respec-
tively. Since 5 ffT lp(t)|dt = 0, and ¢(t) is continuous and bounded
on R,

1 T —\S g A\t
b= o / (= allp(s)] + llp(-s)ds / e

T
_ m / (A= allp(s)] + bllp(=s)])ds

e (T \
TANIT /_Te (IA = alle(s)] + [Bllp(=s)])ds

— 0, asT > ¢

and
L, = 1 /°°e—>\s(|)\——a||<p(s)|+|b”<p(_s)|)ds/T Mt
4T Jr r
1— 6—2)\T ) MT—s)
= AT /T € (IX = alle(s)| + [bllo(—3)|)ds

— 0as T — oo.

Similarly we can show I3, Iy — 0 as T — oo.

So z(t) is pseudo almost periodic solution of (2.1).

Uniqueness. If there is another pseudo almost periodic solution x4 (¢)
for Eq.(2.1), then the difference z(t) — z;(t) should be a solution of the
homogeneous equation

(2.1) &(t) + ax(t) + bx(—t) = 0,b #0,t € R.
According to the Lemma 2 of [2], we can derive
(2.2) z(t) —z1(t) =C (A 2ty e_)‘t) ,t€R,

for some constant C. If C' # 0, then z(t) — z1(¢) will be unbounded.
This is a contradiction to the boundedness of pseudo almost periodic
function. So z(t) — z1(t) =0, i.e z(t) = z1(¢).

If g(t) is almost periodic, then g(t) = h(t), ¢(t) = 0, and so ®(t) =
0. In this case z(t) = H(t) is the unique almost periodic solution of
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Eq.(1.3). From g¢(t) = z(t) + az(t) + bx(—t) and the lemma 2.3 we
conclude mod (g) C mod (z), and so mod (z) = mod (g). O

Proof of theorem 2.2. We know PAP(R) is a Banach space (cf. [11])
with the supremum norm ||¢|| = sup,cg|¢(t)|. For any ¢ € PAP(R),
)

(R
from Lemma 2.1 and [Theorem 1.5, 6], we see f(t, ¢(t), p(—t))EPAP(R).
According to the theorem 2.1 we see the equation

(2.3) #(t) + az(t) + bz (1) = f(t,4(t), §(—1)),b #0,t € R
has a unique pseudo almost periodic solution, denote it by (T'¢)(t). Then
we define a mapping T : PAP(R) — PAP(R). Now we show T is
contracted.

For ¢(t),¥(t) € PAP(R), the equation
(2.4)
CL‘(t) + a’x(t) + b.'E(——t) = f(t7 ¢(t)7 (b(‘t)) - f(t’ ¢(t), dj(_t))v b 7é 0,teR

has a unique pseudo almost periodic solution (T'¢ — T)(t), and

(T —Ty) (1
= 5] IO a6, 906), 05 ~ S5, 9(5), v
+b[f(=8,0(~5),8(5)) = £(=5, ¥(~s), ¥(s))] ds
= O ) [(5,0(5), (=) = F(5,6(6), ¥(—5)]

—b[f( 8, 9(—5),8(5)) — f(—s,9(=5),%(s))] ds.

A— A 2(b
| o Ty AmAEPEA Ay

Since M%‘#ML < 1, T is a contraction mapping, and so T has
a unique fixed point in PAP(R). That is to say the equation (1.2) has
a unique pseudo almost periodic solution z(t).

If f(t,z,y) € AP(R x R?) , then for any

¢(t) € AP(R)7f(t’ ¢(t)’ ¢(_t)) € AP(R)
too. The subset

B ={¢4(t): 9 € AP(R), mod (¢) C mod (f)}

of AP(R) is a Banach space with supremum norm ||¢|| = supcg |6(2)|
(cf. [12]). From theorem 2.1, we conclude, for any ¢(t) € B, Eq.(2.4)
has a unique almost periodic solution T¢ € B. We can easily prove as
above that T is contracted. So T has a unique fixed point z(t) € B, i.e.
there is a unique harmonic solution for Eq.(1.1). From f(¢, z(t), z(—t) =

So
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z + ax(t) + bx(—t) and lemma 2.3, we conclude mod (f) C mod (z),
so mod (z) = mod (f). The proof of theorem 2.2 is completed. [

References

[1] A.N. Sharkovskii, FPunctional-differential equations with a finite group of argument
transformations in Asymptotic Behavior of Solutions of Functional-Differential
Egautions, Akad. Nauk Ukrain., Inst. Mat., Kiev, (1978), 118-142.

[2] A. R. Afidabizadeh and J. Wiener, Boundary value problems for differential equa-
tions with reflection of argument, Int. J. Math. Math.Sci. 8 (1985), 151-163.

[3] C. P. Cupta, Eristence and uniquness theorem for boundary value problems in-
volving reflection of the argument, Nonlinear Anal., 11 (1987), 1075-1083.

[4] , Two point boundary value problems involving reflection of the argument,
Int. J. Math. Math. Sci. 10 (1987), 361-371.

[6] A. R. Afidabizadeh, Y. K. Huang, and J. Wiener, Bounded solutions for Differen-
tial Equations with Reflection of the Argument, J. Math. Anal. Appl. 135 (1988),
31-37

[6] C.Zhang, Pseudo almost periodic solutions of some differential equations, J. Math.
Anal. Appl. 181 (1994), 62-76.

[7] , Pseudo almost periodic functions and their applications, thesis, the Uni-
versity of Western Ontario, 1992.

[8] E. Ait Dads and O. Arino, Ezponential dichotomy and existence of pseudo almost
periodic solutions of some differential equations, Nonlinear Anal. 27 (1996), 369—
386.

[9] E. Ait Dads, K. Ezzinbi and O. Arino, Pseudo Almost Periodic Solutions for Some
Differential Equations in a Banach Space, Nonlinear Anal. 28 (1997), 1141-1155.

[10] D. Piao, Pseudo almost periodic solutions for the systems of differential equations
with piecewise constant argument [f], Sci. China Ser. A 44 (2001), 1156-1161.

[11] D. Piao and R. Yuan, Pseudo almost periodic solutions of differential equations
with piecewise constant argument, Chinese Ann. Math. 20B (1999), 489-494.

[12] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math. 377,
Springer-Verlag, 1974.

[13] C. Corduneanu, Almost Periodic Functions, Second Edition, Chelsea Publ
Comp., New York, 1989.

[14] B. M. Levitan and V. V. Zhikov, Almost periodic differential functions and dif-
ferential equations, Combridge: Combridge University Press, 1982.

Department of Mathematics
Ocean University of China
Qingdao, 2660071, China
E-mail: davidpiao@yahoo.com



