DOI QR코드

DOI QR Code

A Contact Stress Analysis in a FAM Process Using Variational Approximation Procedure

변분근사법을 이용한 FAM 과정의 접촉응력 해석

  • Published : 2004.09.01

Abstract

A variational approximation procedure is introduced to study the contact stresses between a representative asperity and a feature generally happening in superfinishing processes such as FAM. After a description of the model under consideration is presented, a system of governing equation for the model is derived fullowed by the assumptions made in order to make progress in model development. Final computation is made to evaluate contact stresses on an elastic asperity tip in small scale in size and a computer simulation is performed for detailed surface profile variations on a representative feature. Numerical results are presented along with a discussion of the conclusions that can be drawn from this analysis.

Keywords

References

  1. Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum Press
  2. Hildebrand, F. B., 1976, Advanced Calculus for Applications: 2nd Edition, Prentice-Hall
  3. Moiseiwitsch, B. L., 1966, Variational Principles -Interscience monographs and texts in physics and astronomy, R. E. Marshak (Ed), John Wiley & Sons
  4. Morse, P. M. and Feshbach, H., 1953, Methods of Theoretical Physics, McGraw-Hill
  5. Lanczos, C, 1949, The Variational Principles of Mechanics, University of Toronto Press
  6. Tiersten, H. E, 1968, 'Natural Boundary and Initial Conditions from a Modification of Hamilton's Principle,' Journal of Mathematical Physics, Vol. 9, pp. 1445-1451 https://doi.org/10.1063/1.1664736
  7. Chauhan, R., Ahn, Y., Chandrasekar, S. and Farris, T. N., 1993, 'Role of Indentation Fracture in Free Abrasive Machining of Ceramics,' Wear, Vol. 162-164, pp. 246-257 https://doi.org/10.1016/0043-1648(93)90507-I
  8. Steigerwald, J. M., Murarka, S. P. and Gutmann, R. J., 1997, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley and Sons
  9. Seok, J., Sukam, C. P., Kim, A. T., Tichy, J. A. and Cale, T. S., 2003, 'Multiscale Material Removal Modeling of Chemical Mechanical Polishing,' Wear, Vol. 254, pp. 307-320 https://doi.org/10.1016/S0043-1648(03)00022-X
  10. Johnson, K. L., 1985, Contact mechanics, Cambridge University Press
  11. Timoshenko, S. P. and Goodier, J. N., 1970, Theory of Elasticity 3rd Edition, McGraw-Hill
  12. Nanz, G and Camilletti, L. E., 1995, 'Modeling of Chemical-Mechanical Polishing: A Review,' IEEE Trans. Semicon. Manufact Vol. 8, No. 4, pp. 382-389 https://doi.org/10.1109/66.475179
  13. Seok, J., 2003, 'A Statistical Study of CMP Process in Various Scales,' Transactions of the KSME (A), Vol. 27, No. 12, pp. 2112-2118
  14. West, A. C, Mayer, S. and Reid, J., 2001, 'A Superfilling Model that Predicts Bump Formation,' Electrochemical Solid State Letters, Vol. 4, No. 7, pp. C50-C53 https://doi.org/10.1149/1.1375856
  15. Cao, Y., Taephaisitphongse, P., Chalupa, R. and West, A. C, 2001, 'Three-Additive Model of Superfilling of Copper,' Journal of the Electrochemical Society, Vol. 148, No. 7, pp. C466-C472 https://doi.org/10.1149/1.1377898
  16. Josell, D., Wheeler, D., Huber, W. H. and Moffat, T. P., 2001, 'Superconformal Electrodeposition in Submicron Features,' Physical Review Letters, Vol. 87, No. 1,pp. 016102-1-016102-4 https://doi.org/10.1103/PhysRevLett.87.016102
  17. Moffat, P., Wheeler, D., Huber, W. H. and Josell, D., 2001, 'Superconformal Electrodeposition of Copper,' Electrochemical Solid State Letters, Vol. 4, No. 4, pp. C26-C29 https://doi.org/10.1149/1.1354496
  18. Greenwood, J. A. and Williamson, J. B. P., 1966, 'Contact of Nominally Flat Surfaces,' Proceedings of the Royal Society London, Vol. A295, pp. 300-319 https://doi.org/10.1098/rspa.1966.0242