Characterization of Zn diffusion in TnP Cy $Zn_3P_2$ thin film and rapid thermal annealing

RHP에서의 $Zn_3P_2$ 박막 및 RTA법에 의한 Zn 확산의 특성

  • Published : 2004.09.01

Abstract

Zn diffusions in InP have been studied by electrochemical capacitance voltage. The InP layer was grown by metal organic chemical vapor deposition, and $Zn_3P_2$ thin film was deposited on the epitaxial substrates. The samples annealed in a rapid thermal annealing. It is demonstrated that surface hole concentration as high as $1\times10^{19}\textrm{cm}^{-3}$ can be achieved. When the Zn diffusion was carried at $550^{\circ}C$ and 5-20 min., the diffusion depth of hole concentration moves from 1.51$\mu\textrm{m}$ to 3.23 $\mu\textrm{m}$, and the diffusion coeffcient of Zn is $5.4\times10^{-11}\textrm{cm}^2$/sec. After activation, the concentration is two orders higher than that of untreated sample at 0.30 $\mu\textrm{m}$ depth. As the annealing time is increase, the hole concentration remains almost constant, except deep depth. It means that excess Zn interstitials exist in the doped region is rapidly diffusion into the undoped region and convert into substitutional When the thickness of $SiO_2$ thin film is above 1,000$\AA$, the hole concentration becomes stable distribution.

InP에서 열처리 온도와 시간 및 활성화 온도에 따른 Zn의 확산의 특성을 electrochemical capacitance-voltage 법으로 조사하였다. InP층은 metal organic chemical vapor deposition를 이용하여 성장하였으며, 화산방법으로는 $Zn_3P_2$ 확산과 박막과 rapid thermal annealing를 사용하였다. 최대의 정공 농도를 갖는 p-lnP 층은 $550^{\circ}C$에서 5분 동안 확산과 활성화를 한 시료에서 얻었고, Zn의 농도는 $1\times10^{19}\textrm{cm}^{-3}$이었다. $550^{\circ}C$에서 5-20 분 동안 확산을 수행한 결과 정공농도의 확산 깊이는 1.51 $\mu\textrm{m}$에서 3.23 $\mu\textrm{m}$로 이동하였고, Zn의 확산계수는 $5.4\times10^{-11}\textrm{cm}^2$/sec이었다. 활성화 시간의 증가로, Zn가 더 깊게 확산하지만, 정공농도는 거의 변화가 없었다. 이는 도핑된 영역의 과잉의 침입형 Zn가 도핑되지 않은 영역으로 빠르게 확산하고 치환형 Zn로 변한다는 것을 의미한다. 정공농도는 $SiO_2$ 박막의 두께가 1,000$\AA$ 이상이어야 안정적으로 분포된다.

Keywords

References

  1. Solid-State Electronics v.9 A. Hooper;B. Tuck;A. J. Baker
  2. Jpn. J. Appl. Phys. v.24 K. Kazmierski;B. de Cremoux https://doi.org/10.1143/JJAP.24.239
  3. J. Appl. Phys. v.61 G. J. Van Gulp;P. R. Boudewijn;M. N. C. Kempeners;D. L. A. Tjaden https://doi.org/10.1063/1.338028
  4. Jpn. J. App. Phys. v.27 no.2 K. Ohtsuka;T. Matsui;H. Ogata
  5. J. Phys. v.D8 B. Tuck;A. Hooper
  6. J. Appl. Phys. v.52 J. J. Yang;R. P. Ruth;H. M. Manasevit https://doi.org/10.1063/1.328624
  7. J. Appl. Phys. v.63 S. Reynolds;D. W. Vook;J. F. Gibbons https://doi.org/10.1063/1.340006
  8. J. Appl. Phys. v.69 D. J. Lawrence;F. T. Smith;S.-Tong Lee https://doi.org/10.1063/1.348587
  9. J. Appl. Phys. v.79 M. Ogihara;M. Taninaka;Y. Nakamura https://doi.org/10.1063/1.362652
  10. J. Cryst. Growth v.77 R. Saxena;V. Sardi;J. Oberstar;L. Hodge;M. Keever;G. Trott;K. L. Chen;R. Moon https://doi.org/10.1016/0022-0248(86)90356-8
  11. J. Cryst. Growth v.74 C. C. Hsu;J. S. Yuan;R. M. Cohen;G. B. Stringfellow https://doi.org/10.1016/0022-0248(86)90199-5
  12. Appl. Phys. Lett. v.51 H. S. Marek;H. B. Serreze https://doi.org/10.1063/1.98981
  13. IEEE Trans. Electron Devices v.ED-29 H. Ando;N. Susa;H. Kanbe
  14. IEEE Trans. Electron Devices v.ED-31 F. Schmitt;L. M. Su;D. Franke;R. Kaumanns
  15. Jpn. J. Appl. Phys. v.22 Y. Matsumoto https://doi.org/10.1143/JJAP.22.1699
  16. J. Appl. Phys. v.79 R. A. Logans;S. N. G. Chu;M. Geva;N. T. Ha;C. D. Thurmond https://doi.org/10.1063/1.361039
  17. J. Appl. Phys. v.78 S. N. G. Chu;R. A. Logans;M. Geva;N. T. Ha https://doi.org/10.1063/1.360049