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ON SOME GRONWALL TYPE INTEGRAL
INEQUALITIES AND THEIR APPLICATIONS

Byung-IL KM

ABSTRACT. The aim of the present paper is to establish some non-
linear integral inequalities in two independent variables which pro-
vide explicit bounds on unknown functions. The inequalities given
here can be used as tools in the qualitative theory of certain partial
differential equations.

1. Introduction

The integral inequalities involving functions of one and more than
one independent variables which provide explicit bounds on unknown
functions play a fundamental role in the development of the theory of
differential equations.

Let u : [, + h] — R be a continuous real-valued function satisfying
the inequality

Ogu(t)g/t[a—i—bu(s)]ds for t€ [a,a+ hl,

&

where a, b are nonnegative constants. Then u(t) < ahe® for t € [, +
h]. This result was proved by T. H. Gronwall [8] in the year 1919, and
is the prototype for the study of several integral inequalities of Volterra
type, and also for obtaining explicit bounds of the unknown function.
Among the several publications on this subject, the paper of Bellman
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[3] is very well known: Let z(t) and k(t) be real valued nonnegative
continuous functions for ¢t > «. If a is a constant, a > 0, and

z(t) <a+ /t k(s)x(s)ds, t>a,

(0%
then

t
z(t) < aexp (/ k(s) ds), for t>a.
[e4

It is clear that Bellman’s result contains that of Gronwall. This is
the reason why inequalities of this type were called “Gronwall-Bellman
inequalities” or “Inequalities of Gronwall type’. The Gronwall type
integral inequalities provide a necessary tool for the study of the theory
of differential equations, integral equations and inequalities of various
types (see Gronwall [8] and Guiliano [9]). Some applications of this
result to the study of stability of the solution of linear and nonlinear
differential equations may be found in Bellman [3]. Some applications
to existence and uniqueness theory of differential equations may be found
in Nemyckii-Stepanov [13], Bihari [4], and Langenhop [10]. During the
past few years several authors (see references below and some of the
references cited therein) have established several Gronwall type integral
inequalities in two or more independent real variables. Of course, such
results have application in the theory of partial differential equations
and Volterra integral equations.

In [14], Pachpatte proved the following interesting integral inequality:
Let u(z,y), a(z,y), b(z,y), c(z,y) be nonnegative continuous functions
defined for z,y € R, assume that a(z,y) is nondecreasing in x € Ry.
If

o0

(11) u(z,y) < a(z, y)+ /0 " b(s, y)u(s, u) ds+ / ’ / (s, £)u(s, £) dtds,

0 Jy

for x,y € R4, then

w(z,y) < plz, ) [a(ﬂc, y) + Ae, ) exp ( /0 ’ /0 Y o(r, ) drds)]

for z,y € R4, where

p(z,y) = exp (/03c b(s, y) d8> ;
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Alz,y) = /Oz /OO c(s, t)p(s, t)a(s,t) dtds.

In this paper we obtain bounds in the inequality (1.1) for function
of two independent variables when the function u(z,y) in the right-
hand side of the inequality (1.1) is replaced by the function u”(z,y)
for p > 0,p # 1. We also provide some integral inequalities and some
applications of these integral inequalities for finding the boundedness of
the solutions to hyperbolic partial differential equations.

2. Integral inequalities

In this section we state and prove some new nonlinear integral in-
equalities in two independent variables. Throughout the paper, all the
functions which appear in the inequalities are assumed to be realvalued
and all the integrals are involved in existence on the domains of their
definitions. We shall introduce some notation: R denotes the set of real
numbers and Ry = [0,00) is the given subset of R. The first order par-
tial derivatives of a functions z(z,y) defined for z,y € R with respect
to x and y are denoted by z,(x,y) and z,(x,y) respectively.

THEOREM 2.1. Let u(z,y),a(z,y),b(x,y), c(x,y) be nonnegative co-
ntinuous functions for x,y € R, and let a(z,y) be nondecreasing in
each of the variables for x,y € Ry. Suppose that
(2.1)

w(z,y) < alz,y)+ /Ow b(s,y)uP(s,y)ds + /Om /E>O c(s, t)yuP(s,t)dtds

for z,y € Ry, where p > 0,p # 1 be a constant,

// c(s,t) dtds < 00
0 Jy

and fox b(s,y)uP(s,y)ds is nonincreasing in y € R. Then

(2.2)

u(z,y) < {aq(:c,y) + q/oaC b(s,y)ds+ q/ogC /yoo c(s,t) dtds}

1/q

forx € [0,X),y € [0,Y), whereq = 1—p, X and Y are chosen so that the
expression between |[...] is positive in the subintervals [0, X) and [0,Y).
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Proof. et X >0andY > 0 be fixed. Thenfor 0 <z < X,0<y <
Y we have
(2.3)

u(z,y) <a(X,Y)+ /Ox b(s,y)uP(s,y)ds + /Ox /00 c(s, t)uP (s, t) dtds.

Define a function v(z,y) by the right-hand side of (2.3). Then the func-
tion v(z,y) is nonincreasing in y, u(z,y) < v(z,y), v(0,y) = a(X,Y)
and

599; D e, () + /y " (e, e (@, 1) dt
< bz, y)vP(z,y) + /00 o(z, )vP(z, 1) dt
y

(2.4) < (b(:c,y) + /yoo ez, t) dt) v (z,y),

since u(z,t) < v(z,t) < v(z,y). Define a function z(z,y) by z(z,y) =
v9(z,y)/q. Then, from (2.4) we have

2 (9) = v (@ ) 2 (w,9)

<ot (o) (s +
(2.5) = b(z,y) + /yoo oz, t)dt

where ¢ = 1 — p. Integrating (2.5) over s from 0 to x, and the change of
variable yields

1
z(z,y) < avq(O,y)—I—/ s,y ds+/ / c(s,t) dtds,
0

vi(z, y)—aq(XY —I—q/ bsy)ds—l—q/o/y (s, t) dtds,

where < (respectively, > ) holds for ¢ > 0 (respectively, ¢ < 0). In both
cases this estimate implies

V) {aq(X’ Y)+ q/om b(s,y)ds + q/ogc /yoo k(s,t) dtds] e

for 0 <2z < X,0<y <Y Setting z = X and y = Y and changing
notation we arrive at (2.2). O

o0

oz, t) dt) vP(z,y)

or
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THEOREM 2.2. Let u(z,y),a(z,y),b(z,y),c(x,y) be nonnegative co-
ntinuous functions for z > 0,y > 0, and let a(x,y) be nondecreasing in
each of the variables for x > 0,y > 0. Suppose that

u(z,y) <alz,y) + fox b(s, y)uP(s,y)ds + /095 /Oy c(s, t)uP(s,t) dtds

forx > 0,y > 0, where p > 0,p # 1 be a constant and foxb(s, y)uP(s,y)ds
be nondecreasing in y > 0. Then

u(z,y) < [aq(m’y)+q</0xb(8,y)ds+/om /OyC(S,t)dtds>]1/q

forx €[0,X),y €[0,Y), whereq = 1—p, X andY are chosen so that the
expression between |[...] is positive in the subintervals [0, X) and [0,Y").

Proof. The proof of Theorem 2.2 follows by an argument similar to
that given for the proof of Theorem 2.1 with some minor changes. U
By a reasoning similar to the proof of Theorem 2.1 we also can prove

the following assertion.

THEOREM 2.3. Let u(z,y),a(x,y),b(z,y), c(z,y) be nonnegative co-
ntinuous functions in REL, and let a{z,y) be nonincreasing in each of the
variables in x > 0,y > 0. Suppose that

[ ¢]

u(ey) Saleg)+ [ Moo ds+ [

T X

o0 xO
/ c(s, t)uP(s,t) dtds
y
forx >0,y >0,p>0,p#1 be a constant,

/ b(s,y)ds < oo, / / k(s,t)dtds < oo,
x x y

and [ b(s,y)uP(s,y)ds be nonincreasing in y. Then

u(z,y) < [aq(:c,y) +q(/:o b(s, y) ds-{—/:o /y"o C(S,t)dtds)]l/q

forz € [0,X),y €[0,Y), whereq = 1—p, X and Y are chosen so that the
expression between |...] is positive in the subintervals [0, X) and [0,Y").
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3. Further integral inequalities

In this section we consider further nonlinear integral inequalities for
functions of two independent variables. In what follows, J; = [0, X)
and Jy = [0,Y) are given subsets of real numbers R, and denote by
A = Jy X Ja. The first order partial derivatives of z(x,y) defined for
z,y € R with respect to x and y are denoted by z,(z,y) and z,(z,y),
respectively.

LEMMA 3.1. Let a,b,u € C(A,R+), and k > 1 be constant, and let

(3.1) u(z,y) <k+ /w a(s,y)u(s,y)ds + /Ox /Oy b(s,t)u(s,t)dtds

0

for (z,y) € A\, where fox a(s,y)u(s,y) ds be nondecreasing in y, then

(3.2) u(z,y) < kexp(/om a(s,y)ds + /090 /Oy b(s,t) dtds)

for (z,y) € A.

Proof. Let k > 1, and define a function z(z, y) by the right-hand side
of (3.1). Then z(z,y) > 1,2(0,y) = k, u(z,y) < z(z,y), and

Zz(z,y) = a(z,y)u(z,y) + /Oy b(z,t)u(z,t)dt

z(z,y) (a(x, y) + /O b(z,t) dt).

The last estimate reduces to the inequality

z(2,y) Y
(3.3) Yy Sa(w,y)—i—/o b(z,t) dt.

Keeping y fixed in (3.3), setting = o, and integrating it with respect
to o from 0 to z,z € J1, and making the change of variable yields

(34) 2z < kexp(/oza(s,t) ds—l—/om /Oy b(s, ) dtds).

Using (3.4) in u(z,y) < z(z,y), we get the inequality in (3.2). O
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THEOREM 3.2. Let a,b,c € C(AN,Ry — {0}), u € C(A,R;) and
0 < p <1 bea constant. If

u(z,y) < alz,y)+ /090 b(s,y)uP(s,y)ds + /OI /0?! c(s, t)uP (s, t) dtds

forz >0,y > 0, and fom b(s,y)a?(s,y) ds be nondecreasing in y, then

(3.5) u(z,y) < a(z,y) + fi(z,y) exp(Ai(z,y) + Bi(z,y))
for (z,y) € A, where
(3.6)

iz, 9) :/Oxb(s,y)ap(s,y) ds+/0x /ch(s,t)ap(s,t) dt ds,
Ai(z,y) = p/x b(s,t)aP~(s,t) ds,

0
@y
Bi(z,y)=p / c(s,t)aP~ (s, t) dt ds
o Jo

for (z,y) € A.

Proof. We deduce from the hypothesis on wu(z,y) that u(z,y) <
a(z,y) + z{x,y), where the function z(z,y) is defined by

Hz,y) = /O " bs, y)uP (s, y) dids + /0 ’ /O (s, 0P (s, t) dt ds.

By applying some generalizations of Bernoulli’s inequality (1 + z)® <
1+ ax, where 0 < a < 1 and —1 < z, it is easy to observe that

(3.7) < af(z,y) + pa®~ (2, y)2(2,y)

for0<p<1la:A — Ry—{0}. From the definition of z(z,y) and (3.7)
we get

) < [ s w)lalsvy) + 5ls.9)) dtds
0
+/O /0 c(s,t)(als,t) + z(s,t))P dt ds.
< Alew)+p | Us e s p)He ) ds

Ty
+p/ / c(s,t)aP (s, t)z(s,t) dt ds,
o Jo
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where the function fi(z,y) is defined by (3.6). First, we assume that
f(z,y) > 0 for (z,y) € AA. We get that

2(2,9) 1+p/ b(s,y)aP (s, ) 2(s,9) ds

Alzy) — fi(s,y)
- z(s, t)

3.8 + / / c(s,t)aP~ (s, t dtds.
(3.5 p [ [ etsne e nn
From the Lemma 3.1, the previous inequality (3.8) yields
(3.9)

z(z,y)

fl(x7y)

T T Yy
< exp(p/ b(s,y)aP " (s,y) ds +p/ / (s, t)aP~1(s,t) dtds).
0 0o Jo

Using inequality (3.9) in u(z,y) < a(z,y) + 2(z,y), we get the required
inequality in (3.5). a

LEMMA 3.3. Leta,b,u € C(A,Ry), and k > 1 is a constant, and let
u@y) <k+ [ alsputspdst [ [ s dulstdeds
4} 0 Yy

for (z,y) € A, where fow a(s,y)u(s,y) ds be nondecreasing in y and

/ / b(s,t)dtds < oo,

0 Jy

u(z,y) Skexp(/ a(s,y)ds+/ / b(s,t)dtds)
0 0 y

for (z,y) € A.

then

Proof. The proof of Lemma 3.3 follows by an argument similar to
that given for the proof of Lemma 3.1 with some minor changes. (]

THEOREM 3.4. Let a,b,c € C(A, Ry — {0}), u € C(A,Ry) and
0 < p <1 isa constant. If

u(z,y) < alz,y) + /Ow b(s,y)uP(s,y)ds + /ﬂv /00 c(s, t)uP(s,t) dtds

0
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for x,y > 0, where fom b(s,y)aP(s,y) ds be nondecreasing in y and

// (s, t) dtds < o0,
0 Jy

U(Z‘,y) < a($7y) + fz(iE;ZU) eXP(Al(any) + B2(x7y))
for (z,y) € A, where

then

fg(x,y)z/o b(s,y)ap(s,y)ds+/O /y c(s,t)aP(s,t)dtds,
Bg(:zj,y):p/o / c(s,t)aP~ (s, t) dt ds

for (z,y) € A and Ay(z,y) is defined by Theorem 3.2.
Proof. The proof of Theorem 3.4 follows by an argument similar to
that given for the proof of Theorem 3.2 with some minor changes. O
By a reasoning similar to the proof of Lemma 3.1 we also can prove

the following assertion.

LEMMA 3.5. Let a,b € C(A,Ry), u € C(ARy) and k > 1 is a
constant, and let

o9}

u(z,y) < k+/

T

a(s,y)u(s,y)ds +/

Yy

/ b(s,t)u(s,t)dtds
y
for (z,y) € A, where fow a(s,y)u(s,y) ds be nonincreasing in y,

/ a(s,y)ds < oo and / / b(s,t)dtds < oo,
x y Jy

then

u(z,y) < kexp(/:o a(s,y) d8+/:o /yoo b(s,t) dtds)

for (z,y) € A.

By a reasoning similar to the proof of Theorem 3.2 we also can prove
the following assertion.
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THEOREM 3.6. Let a,b,c € C(A,Ry — {0}), v € C(A,Ry) and
0 < p <1 is a constant, and let

wo) Sale)+ [ bsypa)ds+ [ [ el (s duds
x T Yy
forx >0,y >0, fom b(s,y)aP(s,y) ds be nonincreasing in y,

/ a(s,y)ds < oo and / / b(s,t)dtds < oo,
x Yy Y
then

u(z,y) < a(z,y) + fa(z,y) exp(Az(2,y) + Bs(,y))
for (x,y) € A, where

falz,y) = /00 b(s,y)aP(s,y)ds + /00 /00 c(s,t)aP(s,t) dtds,
T z Y

As(z,y) =p/ b(s,t)aP~*(s,t) ds,

T

Bs(z,y) -——p/ / c(s,t)aP~ (s, t) dt ds
z Jy

for (z,y) € A.

4. Applications

In this section we present some immediate applications of Theorem
3.6 to study certain properties of solutions of the following terminal
value problem for the hyperbolic partial differential equation

(4.1) Uszy(2,9) = Mz, 9, u(z,y)) +7(z,y),
(4.2) u(z,00) = 0oo (), u(00,y) = Too (¥), u(oo, ) = k,
where h: R xR — R,7: R2 — R, 000, Too(y) : R+ — R are continuous

functions and k is a real constant. Qur first aim is to derive the bound
on the solution of the problem (4.1)-(4.2).

EXAMPLE 1. Suppose that the function h in (4.1) satisfies the con-
dition

(4.3) | h(z,y,u) [< ez, y) | w ],
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oo (T) + Too(y) — k + /00 /yoo r(s,t) dtds

x

(4.4) -
< a(z,y) +/ b(s,y)u(s,y)ds,

where a(z,y), b(z, y) and c(ac,‘y) are as defined in Theorem 3.6. If u(zx, y)
be a solution of (4.1) with the conditions (4.2), then it can be written
as (see [1, p. 80])
(4.5)

Wz, Y) = 0o () + Too(y) — k +/

X

h /OO (h(s,t,u(s,t)) +r(s,t)) dids

for ,y € R. From (4.3), (4.4) and (4.5) we get
(46) |u(z,v)] < alz,y) + /oo b(s, y)lul ds + /OO /OO ofs, t)ul dtds.

Now, a suitable application of Theorem 3.6 to (4.6) yields the required
estimate following

(@7)
u(z, y) §a<x,y)+f(x,y)exp</:o b(s, ) ds+/:o /yoo c(s,t)dtds)

for (z,y) € A, where

f(:c,y):/:o b(s, y)als,y) ds+/:o /yoo o(s, t)a(s, ) dt ds

for (z,y) € A. The right-hand side of (4.7) gives us the bound on the
solution u(x,y) of (4.1)-(4.2) in terms of the known functions. Thus, if
the right-hand side of (4.7) is bounded, then we assert that the solution
of (4.1)-(4.2) is bounded for (z,y) € A.

In the next we derive from Theorem 3.2 the boundedness of the solu-
tions of the initial boundary value problem for partial differential equa-
tions of the form

(48) uiy(‘ray) = f((m,y,u(x,y)),
(4.9) u(z,0) = a1(x),u(0,y) = az(y), a1(0) = a2(0),

where f € C(A x R?,R),a; € C*(J1, R) and az € C1(J2, R).



570 Byung-Il Kim

EXAMPLE 2. Assume that f: A x R? — R is a continuous function
for which there exist continuous positive functions a(z,y),b(z,y) for
(z,y) € A such that

(4.10) | f(z,y,u) < c(z,y) [ u],

1) @)+ ) - ax(0) 1< alon) + [ “b(s,y) | u(s,v) | ds,

for k : A — Ry —{0}, where a(z,y), b(z,y), c(z,y) and [;b(s,y)a(s,y)ds
are as defined in Theorem 3.2. If u(z,y) be a solution of (4.8) with the
conditions (4.9), then it can be written as

(4.12)  w(z,y) =‘a1(a:) + az(y) — a1(0) + ‘/Om /Oy f(s,t,u(s,t))dtds.

Using (4.10) and (4.11) in (4.12), we obtain

(4.13)  |u(z,y)| < alz,y) + /Om b(s,y)|u| ds + /Oz /Oy c(s,t)|u| dtds.

Now, a suitable application of Theorem 3.2 to (4.13) yields the required
estimate following
(4.14)

u(z,y) < alz,y) + flz,y) exp(/ox b(s,t)ds + /Ox /oy c(s,t) dtds)

for (z,y) € A, where

flz,y) = /090 b(s,y)a(s,y)ds + /Ox /0?/ c(s,t)a(s,t)dtds

for (z,y) € A. The right-hand side of (4.14) gives us the bound on the
solution u(z,y) of (4.8)-(4.9) in terms of the known functions. Thus, if
the right-hand side of (4.14) is bounded, then we assert that the solution
of (4.8)-(4.9) is bounded for (z,y) € A.
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