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CENTRAL LIMIT TYPE THEOREM
FOR WEIGHTED PARTICLE SYSTEMS

NHANSOOK CHO AND YOUNGMEE KWON

ABSTRACT. We consider a system of particles with locations
{XPt):t>0,i=1,...,n}

in R%, time-varying weights {A?(¢) : ¢ > 0,4 = 1,...,n} and
weighted empirical measure processes V™ (t)=% L AM(t)S X (%),
where §; is the Dirac measure. It is known that there exists the
limit of {V,,} in the week* topology on M (R%) under suitable condi-
tions. If {X7*, A?,V "} satisfies some diffusion equations, applying
Ito formula, we prove a central limit type theorem for the empiri-

cal process {V"}, i.e., we consider the convergence of the processes
N = /n(V™—V). Besides, we study a characterization of its limit.

1. Introduction

We consider {X;(t) : t > 0,4 € N} as a system of particles with
locations in R¢, time-varying weights {A;(t) : t > 0,7 € N} and weighted
empirical measures of the form

1
(1.1) V(t) = lim — z—:lAi(t)(SXi(t)?

where 0, is the Dirac measure at « and the limit exists in the weak*
topology on M(R?), the collection of all finite signed Borel measures on
R4. Kurtz and Xiong [6] proved that under some conditions
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is the unique solution of the following equations:

(1.2)
X;(t) = X;(0) +/O a(X;(s),V(s))dB;(s) +/0 c(Xi(s), V(s))ds
+/ a(X;i(s), V(s),u)W(du,ds)
U x[0,t]
and
At) = Ai(0) + /0 Ai(sT (Xi(5), V() dBi(s)
(13) + /0 Ai()d(Xi(s), V (5))ds

+ / As(s)B(Xi(s), V (5), w)W (du, ds),
Ux[0,t]

where the {B;} are independent standard R%-valued Brownian motions
and W, independent of {B;}, is Gaussian white noise with

E[W (A, )W(B,t)] = u(AN B)t.

We assume that p is a Borel measure on a complete separable metric
space U and {4;(0), X;(0)} are i.i.d. and independent of {B;} and W.

As one part of that paper, in [6] they proved that (1.1) is approxi-
mated by the weighted empirical measure process of the following finite
interacting particle system:

(1.4)
XP() =X,(0) + / (X2 (s), V*(s)dBi(s) + | (X7 (s),V™(s))ds
0 0
+/ a(X;(s), V™'(3),u)W (du,ds)
U x[0,t]
and
AN(t) =4;(0) + / AP(s)yP (X(s), V™ (5))dB(s)

(1.5) / A™(s s), V™ (s))ds

/ AT ($)B(XT(s), V™(s), )W (du, ds),
U x[0,t]
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fori=1,2,...,n, where
1 n
(1.6) Vh(t) = - > AT ()6xp (-
i=1

In this paper we study a convergence of the fluctuations for the
McKean-Vlasov model related with the above processes. For every in-
teger n, let n™ be the fluctuation process defined by

;= vn(V*() - V(1)

In the following we prove that the fluctuations belong uniformly in n
and ¢ to a certain Hilbert space, a weighted Sobolev space. Weighted
Sobolev embedding theory is one of the keys to obtain the tightness of
{n'}.

S. Meleard [10] considered this kind of convergence for the classical
McKean-Vlasov case. Since the pioneering work by McKean [9], limits
of empirical measure processes for systems of interacting diffusions have
been studied by Chiang et al. [1], Graham [3], Kallianpur and Xiong
[5], Kurtz and Xiong (6], [7], [8] and reference therein.

While we have prepared this paper on the tightness of {n"} in the
dual space of Schwartz space S, which is the space of infinitely differ-
entiable functions with bounded supports, Kurtz sent us the preprint of
(8]. This paper also deals with the same problem. Since the weighted
Sobolev space is another interesting infinite-dimensional space, we have
reconsidered the tightness of {n"} in the weighted Sobolev space. The
present paper also differs from (8] in the following aspect: Kurtz and
Xiong in (8] use Mitoma’s theorem, which actually induces to show the
tightness of real-valued processes. We show the tightness of {#"} as
a distribution-valued processes using the structure of weighted Sobolev
space.

In the next section we state some basic facts about the system (1.1)-
(1.3) obtained in [6], [7] and [8] for the convenience of the reader. We
also introduce some lemmas which are going to be used later and a brief
review on weighted Sobolev space.

In section 3, we study the tightness of the process, {n™} in a weighted
Sobolev space.

NOTATIONS..

-M 1 (R?) is the collection of all finite and positive Borel measure on
R4
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-For every integer j, C] denote the space of bounded functions with
bounded derivatives of order greater than or equal to 1 and less than j.

-The letter C' and K with sub-indices denote constant numbers which
can change from line to line.

2. Preliminaries

First, we define the Wasserstein metric as the following: For 1,15 €

M+(Rd)’
p(, v2) = sup{[{¢,v1) — (¢, 12)| : ¢ € By},

where B1 = {¢ : |¢(z)—¢(y)| < |z—v], |¢(x)| < 1Vz,y € R?}. Note that
the metric p determines the topology of weak convergence on M (R%).
For a bounded Lipshitz functions f, define

Ifle = sup |f(z)[+ sup LE=IWI
TER? x,yER4 lx — y'

Let {fx} be a dense subset of Cy(R?) such that ||f;||z < oo for each .
Define

- | Vlafz V2,fz>l
Z 2Z”fz“L '

UlaV2

Note that p(v1,v2) < p(v1,v2). For the equation system (1.1)-(1.3), we
assume that o : R% x M(R%) — R4 ¢ : RY x M(R?) — R4 o :
RIx M(R})xU — R¥*? ~v: RIxM(R?) — R4 d: R4xM(R%) — R
and 8 : R% x M(R?) x U — R satisfy the following Condition A;

CONDITION A.
(Al) There exists a constant K such that for each z € R%,v €
M. (R%)

0@, )2 + le(z, ) + /U oz, v, ) P )

+ (e, ) + ld(z, ) + /U 18(z, v, ) Pu(du) < K2,
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(A2) For each z1,72 € R?, v1,v5 € M (RY),
lo(@1,11) — o(@2,12)[* + |e(21,11) — (2, v2)

+ (1, 1) — (@2, w2 + /U laer, v1, 1) — (s, v, u)|2u(du)

+ !d(zlyyl) - d(x27l/2)[2 + /U ,ﬂ(l‘l,l/l,U) —ﬂ(xg,Vg,U)F/t(dU)
< K*(|lzy — zaf® + p(in, 12)?).

(A3) There exists constant A > 1 and K > 0 such that for any i.i.d.
sequence (£;,¢;),i=1,2,... and z € R* we have

KEe
n)\

i

1 n
EIU(‘T’ E 2516@) - O’(CL‘,,U,)FA <
i=1

where u(-) = E[¢11¢,e.]. A similar inequality holds for the other coeffi-
cients.
(A4) For each v € M(R%), and u € U

0(" I/),C(-, V)aa(" v, u)a7(" V)’d('7l/))ﬂ(" v, U) € C;+D’2D(Rd)a

where D = [%] + 1
In the following we state some facts about the system (1.1)-(1.3).
THEOREM 2.1 [6]. Suppose that Condition (A1) and (A2) hold and

E|A;1(0))? + E|X1(0)]? < 0.

Then the system has the unique solution.

LEMMA 2.2 [8]. Suppose Condition (A1) holds. If (X, A%, V™), for
t=1,2,...,n is the solution of (1.1)-(1.3) and for some p > 0

(2.1) E|A1(0)]P + E|1X1(0)]P < 00
then for every t > 0,

sup E sup (JA7(s)] + | X7 (s)[P) < oo.
1<n<oo  0<s<t
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THEOREM 2.3 [8]. Under the assumptions (A1)-(A3), we have

Esup (‘X,"(t ATEY — X (6 AT
t<T
1 n
+ (DA EATL) = At AT < S
i=1
where ¢1 (T, m) is a constant,

n k
n o__ . l n 2 2 . l . 2 2
(2.2) 7 =inf{t: - E A7 (t)* > m*or kli{go . g A;(t)° > m*},

=1 i=1

and

1
- (2.3) sup P(r" < T) < ﬁSeW”K)TEAZ-(o)%

COROLLARY 2.4 [7]. Assume (2.1) holds for any p > 1 and (Al)-
(A3). Then for each bounded Lipschitz function f and each t > 0,

ca(t,m)|| £z

(2.4) BV (0)f ~ VOfLpey) < ZOTR0L,

where c3(t, m) is a constant.

The rate of convergence given by (2.4) is equivalent to weak conver-
gence. The estimate (2.4) implies the following.

COROLLARY 2.5 [7]. Assume (2.1) holds for any p > 1 and (Al)-
(A3). Foreacht >0,

Co (t, m)

Recall (V (¢), Xi(t), Ai(t)) in (1.1)-(1.3). If A;(t) =1 for all ¢ and 1,
that is weights never vary, and there is no term driven by white noise
in X;(t), then the limiting empirical process like V(¢) is deterministic
and characterized by McKean-Vlasov equation. Here, the limit V(t) is
still stochastic. The classical McKean-Vlasov limit satisfies the following
equation (see [6] and [9]):

E[p(V"(), V() i<y <

X(t) = X(0) + /0 o(X(s), P(s))dB(s) + /0 o(X(s), P(s))ds,
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where P(s) is required to be the distribution of X (t).

Our model is much more general with time varying weights and
terms related to white noise. By the following Theorem 2.6 our set-
ting (X, A, V) satisfies the following stochastic differential equation:

(2.5)

and
(2.6)

A(t) :A(O)+/O A(s)’yT(X(:s),V(s))dB(s)—F/0 A(s)d(X (s),V(s))ds
+ [ AGBX(s),V(s), W (dus do),
Ux[0,t]

where V/(t) is the random measure determined by

(2.7) (6, V(1) = EIAB (X () F"],
where {F}V} is the filtration generated by W (see in detail [6]).

THEOREM 2.6 [6]. Let (X, A,V, B, W) satisfy (2.5)-(2.7).

Then there exists a solution ({X;},{A:},{B:}, V,W) of (1.1)-(1.3)
such that (X, A;,V,Bi, W) has the same distribution as (X,A,V,B,
W). Conversely, if there exists a pathwise unique solution ({X;}, {A:},
{B;},V,W) of (1.1)-(1.3), then (X1, A1,V, B1, W) is a solution of (2.5)-
(2.7).

THEOREM 2.7 [6]. Let V be the weighted empirical measure for the

particle system given by Theorem 2.2 and 2.3. Then V is a solution of
the following SDE;

(2.8)
(9, V(t)) =(¢,V(0)) +/0 (d(-, V(s))¢+ L(V(s))g, V(s))ds

+ /U oy BV 09
+ T (-, V(s),u)Ve, V(s))W(du,ds),V¢ € CZ(R%),
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where Vo(z) = (%7%""’8ld)( )

d d
(2.9) % 2; (%, )05, 0s,6(z) + ;bi(x,v)axiqS(m)
with
a(z,v) = o(z,v)o 7 (z,v) +/ oz, v,u)a’ (z,v, u)u(du)
U
and

b(z,v) = c(z,v) + o(z,v)y(z,v) + /Uﬂ(a:,v,u)a(x,v,u)u(du).

Now we briefly review the weighted Sobolev space. Consider the space
of all real-valued function ¢ defined on R? with partial derivatives up to
order j such that

[D*g(@
“g“]a—(z 1+|$|2a dx)2 < 00,

where || denotes the Euclidean norm on R%, and if k = (k1, k2, - . . , ka),
then k = E?Il k; and D¥g = &

amfl yee ,Bmsd ’
Let WJ'* be the closure of the set of functions of class C°° with
compact support for this norm. We denote by W, 7 its dual space and
let

o D)l (x)l

|DFg(z)|

< a = '
—0,Vk < j}, llgllcs ZSRd 1+ [z

k=17%€

={g:

We have the following embedding:

Wt — g2, m>%» 20, a>0

—j —; 2
Wy hatB ., o e o> 7

2 2
2 i>0 >0 >Z
, m>-, j20, a0, B i

Jj=20,a>0

WO—J}CH'ﬁ AN WO_ (m+j),a

We are going to use the following lemma introduced by Meleard [10].
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LEMMA 2.8. For every fixed z,y € R%, Dgy, Dy Hy : W()1+D’2D — R
d

defined by Day(¢) = ¢(z) — d(y), Du(9) = ¢(x), Ha(9) = Liy 5z (2)
are continuous and :
| Dayll— (140,20 <Kalz — yi(1 + |22 + |y*P)
| Dall -1+ y,20 <K2(1+ |[*P)
| Ha|l— (14-py.2p <K3(1 + |z[?P),

where ||z||* = (23 +---+2%)%, and K1, K, and K3 are some constants.

3. Tightness of {n"}

In this section, we are going to show that {n™} is relatively compact

in Wy 24D)D 1o show the criteria of relative compactness of {n™} in

Wy 20+D)D e review the following facts in [2] and [4].

REMARK 3.0.

(1) A sequence of adaptive processes {Y"} on the filtered spaces
(Qn, F™, P"), taking values in a Hilbert space H (with a norm || - ||z) is
relatively compact in C([0,T], H) if both following conditions hold:

I. There exists a Hilbert space Hy (with a norm | - ||z,) such that
Hy — H and for each t < T,

sup B™[[¥7" 13, < oo.
n

II. For each T > 0, there exists a family {v,(d) : 0 < § < 1} of non-
negative random variables satisfying
B - Y EIFD] < B[ ()7,
0<t<T,|t—s| <é;in addition,
}irr(l) sup E" [y, (8)] = 0.
(2) Due to (2.3) for given € > 0, there exists large enough m such

that sup, P(72 < T) < e. Therefore to prove the tightness of {#"} on
[0,T], it is enough to prove the tightness of {n7;,» } on [0, T since

w(t) = w(t)l(T;’llST) + w(t)l(T%>T)
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For all t € [0,7] and for all w € {7} > T}, we have

n k
1 1
—E:AT‘ d I —E:At2
n 2 i < m?an 1mk=1 i

Similarly if (2.1) holds for any p > 1, from Lemma 2.2 we may assume
that for all ¢ € [0,T] and w € {7], > T},

~su AT (¢ <ch
nt<gz )

The following lemmas are the adaptations of the results of Meleard
in [10] but the proof of Lemma 3.1 should be reset with this generalized
processes.

LEMMA 3.1. If(2.1) holds for any p > 1 with the assumptions (Al)-
(A3), the family {n}}52,, t < T is bounded uniformly in n and t in

WO_(1+D)’2D, that is

(3.1) SuPSUPE(||77?”2~(1+D),2D) < oo.
n t<T

Proof. Let for each ¢ € W' ™P"*P and for any t € [0, T
S7(6) =VA(E SIAN OO (1) - A O]
UF(¢) =v/n(
17(6) = V(L SIAWSCE D) - (Vi ).

Let {¢,} be a completely orthonormal system(CONS) in Wy 2P then

[e o]

Z%%<CZ$%+Z@%+ZW%,
p=1 p=1

=1
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where C is a constant. Since (A?,XP(t), Xi(t)), ¢ = 1,2,... ,n are
exchangeable (see [8]), we have

ESP(¢p)? == ZA" ($p(X7(2)) — dp(X(1)))

< 1n2E(A"( D($p(XT (1) — $p(Xa2 (1))

< nEAT(H)2E (pp(X2(2)) — dp(Xi(1)))*.

Hence
EZSt 2 <nEA}(t)*E|Dxp t)Xl(t)”(H—D 2D9

where the mapping Dxr ) x,(t) 18 defined in Lemma 2.8. Also from
Lemma 2.8

(3.2)

nE[AT ()| Dxp ) x, 01714 0y 20 Lrn > )
< nKyE[AT()’)E[IXT(t) — X2 (0P 1+ | XT O + X1 (8)*P)1rp >7]
< nK,E[AP ()2 E[|XT(t) — X1 (8)|Lrn 5] 2 E[1 + | XP()[*P

+ X2 (8)[FP))2

1 (Ta m)
n2

< nk;Efsup A7 (6)%]( >%E[§gg<1 +IXTORP + X1 (1) BP)]

<0

by Lemma 2.2 and Theorem 2.3. Hence from (2.3) and (3.2)

sup E Z ST ($p)? < 0

p=1

Similarly,

BUP@P = B( 3 (A7) - A()#(X,(1)

< SRPB[(AT (1) - Ay()VIEIR(X ()]

2
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Therefore by the definition of Dy, ;) in Lemma 2.8, Theorem 2.3 and
(2.3) induce that
(3.3)
EY Up(¢p)* < nE[(AT(t) - Ai()*IE[| Dx, 0 1%]
p=1

T
< YAl o0 4 o) <o

FITP@AF] = + 3 BlAWOSCG() ~ (Ve N FP T

n

< 13 BlA (X)) FY ) - BV, )2

< Y BlA@IG)P 1A

Therefore

B4 BTG = 2 Y B (A0S0

< Y E[(A0) BB, (X1 ()]

p=1
< K3E[1 +]X1()|*P] < oo.

Hence from (3.2)-(3.4) and Parseval’s identity

o0
sup sup E||n{‘||2_(1+D)’2D = sup supEZ(n?,d)p)z < 00.
n t<T not<T 5

O

LEMMA 3.2. If(2.1) holds for any p > 1 with the assumptions (Al)-
(A4), the random operator L(-) defined by (2.9) is a linear continuous
mapping from W02+2D’D into W01+D’2D and for all ¢ € Wg+2D’D, uni-
formly in n and w,

(3:5) IZ(V* ()¢l a+Dy2p < K||4ll2+2D,0-
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Proof. Intrinsically, if we follow the proof of Lemma 5.6 in [10] we
can get (3.5). O

PROPOSITION 3.3. If (2.1) holds for any p > 1 with the assumptions
(A1)-(A4),
sup E(sup ”ntn||2—2(1+D),D) < .
n t<T

Proof. Applying Ito’s formula to (1.5) and (1.6), for every ¢ CZ(R%),
we have

AP B)BXE(E) =A(0)$(X}(0))
+ [ A B ()T (XD (), V7 (5))
+ VT H(X($))a (X2 (s), V7 (s))]dBi(s)

+f AR O(XE ()X (5), V™ (5))

LV (5)$(XP(5)))ds

[ g OB OBOT (9,77 (6), 09

+a(X7(s), V(3), w)Vo(X] ()W (du, ds).

Note that "

(V"(2),6) = = 3 ANESXE(E).
Therefore
(3.6)

V(8),6) = (V™(0), )
23 [ A N6, 776)
TG ()X (), V(B (o)
+ [l Ve LV s
+ o VBV w9
+aT (-, V™(s),u) Vo)W (du, ds).
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Then, by (2.8) and (3.6) we have

(3.7)
<77;:n7 ¢> = <776L’ ¢>

+ % XZ; /0 t AT () (X ()T (XP(s), V7(s))

+ VTG(X](5))o(X](s), V™(s)))ldBi(s)

+x/ﬁ/t [(V™(s),d(-, V"(s))¢ + L(V"(5))9)

—(V(5),d(-, V()¢ + L(V (s))¢)]ds

+f/ (V™(8),8(, V™(s),w)é + T (-, V(s),u) V)
(-, V(s),w)¢ + a(-, V(s),u)V¢)) W (du, ds).

Let {¢,} be a CONS in WZT2PP of functions of class C® with compact
support on R?. Recall that 7} = \/n(V"(t) — V(t))

(3.8)
E(’h?» ¢P>2
< C(E(ng,vp)*

+ B 02,0V (5)0p + LV ()’
0

T B /0 (V (), (-, V™(5))p + LV™(5) )

—(V(s),d(-, V(8))thp + L(V(3))p))ds)?

+ Bl > / ARy (XP(8)Y(XT(5), V(5))

+ VT (X7 ()0 (X1 (s), V™(5))dB;(s))?

+ E( / (2, B V™ (s), Wby + T (- VI (s), u) Vb, )W (du, ds))?
U x[0,t]

+nB( / (V(3), B, V() )y + aT (-, V7 (5), 1) V)

Ux[0,t]
— (V(5), B, V() u)p + aT (-, V(s),u) Vb)) W (du, ds))°).



Central limit type theorem for weighted particle systems 787

To handle the martingale parts of (3.7) let

(3.9)
M (Yp)

1 . ! n n n n
3 / A%y (X (5))(1(XP(5), V7(5))
- VT (XP(5))o (XP(5), V™(s))dBi(s)
+ / (ng, B¢, V™(s),u)hp + aT(~, V7(s),u)Vipp) W (du, ds)
Ux[0,t]

+ VRE / (V(5), BC, V™ (S), )y + aT (- V™ (5), u) Vi)

Ux[0,t]
—{(V(5), B(, V(8), w)op + T (-, V(5), u) Vi) )W (du, ds)
EMtn(wp) + Mln,t(wp) + Mén,t(wp)-

By Schwartz’s and Doob’s inequality, we get
oC
E Z Sup(n?a ¢P>2
—t<T
p=1
< C(Elms 12 214a),p

T oo
(310)  +E / st,d(-,v"(s)wp+L<V”<s>>wp>2ds

+nE / Z $),d(, V™ (8))p + LV ()1

(3.11) —d(, V(s ))% = L(V(s))¥p)°ds
(3.12) +ZE51<1$M (1p)?).

To estimate (3.10), let H*(¢) = (0%, L(V™(s)y) for any function 1 €
W02+2D "D Then by Lemma 3.2, uniformly in w

(3.13) [{ng", LV™ ())¥)] < KlInZ |l -1+p),20 1¥ll2+2D,D-
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Hence by Parseval’s inequality,

(3.14)

o0
sup Y (17, L(V™(8))p)” = sup | H} N2 514y,

< K?sup [0} (14.0y.20 < 0.
n

Similarly by Condition (A1),
o

(3.15) Esup > (nF,d(-, V™(s))¢p)? < KzEsgp 115112 140y, < 00
p=1

Hence
(3.10) < 2K*Bsup 11712 (14 p) 2

For (3.11), let for any function 1 € W02(1+D),D
.f’}:(i/f) = (V(s),d(-, V"(s))w — d(-, V(s))v).
Then

[HZ )P =V (), d(-, V™ ()9 — d(-, V(s)w)
<KV ()12 (14.5),20P(V"™(8), V() 1¥lI 141y 2

Therefore

1A 14py2p < EEIV(S2 140y 20V (5), V(s))?

>0

Esupn lﬁ?(¢p)|2 = nk sup |[H3"H2—2(1+D),D
s<T p=1 s<T

E sup "||Hn”2—(1+D),2D
s<T

(3.16)

< nK?. Esup HV(S)Hz—(H-D),ZDE sup p(V"(s), V(s))?
s<T s<T

< C3 (Ta m)a
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where c3(7T',m) is a constant. Similarly, by Corollary 2.5

[e o]

(3.17) Esupn (V (), LIV™(8))hp = LV ())tp)” < ea(T, m),

where ¢4 (T, m) is a constant. By the Remark 3.0(2), we can deduce that
(3.11) < o0.
Finally,

[oo]
sup E(sup IMZ‘(%)F) =sup E(sup ”Mtn”2—2(l+D),D)
n t<T p=1 n t<T
<sup E(sup ”Mtn“2—(1+D),2D) < 00,
n t<T
by the following Proposition 3.4. Therefore we get

sup E(sup ”"7?I|2—2(1+D),D) < 0o.
n t<T
O

PROPOSITION 3.4. If (2.1) holds for any p > 1 with the assumptions

(A1)-(A4), the process M is a WO_(1+D)’2D—Va1ued martingale and it
satisfies

(3.18) sup E(sup ”Mtn“2—(1+D),2D) < oo.
n t<T
Proof. Let
(3.19) M7 (¢) = M7() + M7y ($) + M34(0),

for any test function, ¢ as (3.6). Let {¢#,}52, be a CONS in witp.2b
of functions of class C™ with compact support on R%. First,

EY  MZ(4p)?

S n T
=EY 23 [ AT, N9, V()
p=1"" i=1
VT (X))o (X7 (s), V7 (5))]Pds
0 T
<KEY [ (AP @0 (X7 ()17 (5)

+ VT 6p(XT(9)?0%(XT(5), V"(s))) ds
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00 AT
<KAEY [ ANPEATE) + ATV, (XD (9)d
p=1
by Condition Al
0 AT
< Ky - (T, m)(EZ/ $2(XT(s)) + Vép(XT(s5))*ds) by Lemma 2.2
0

< KyE(sup(1 + |X7(s)|*P) by Lemma 2.8,
s<T

where K7 and K> are some constants. Hence by Lemma 2.2
o
sup Z EMZ(¢,)? < o0
n
p=1

For the second part of (3.19)

+ a(, V"(s), u)Vchp)W(du, cls))2
= EZ/ ("72, ("Vn(s)vu)¢P
+a(-, V™(s),u) V7 ) u(du)ds

<K2EZ / [ ]ns,gs,, + (0™, VT¢,)2ds by Condition (A1)
Ux[0,t

< KZE”% I1t14-Dy,20-

To show E Y 021 MZ,($p)? < oo,

EM3 (¢p)?

= ’I’LE ((V(s),ﬁ(-,V”(s),u)d)p —ﬁ(-,V(s),u)q’)p)

Ux[0,t]
+(V(5),aT (-, V"(s), w)Vép — aT (-, V(s),u)V,)) *duds.
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EZ VBT, 080 = B V) ) s

U x[o, t]

1 C2(t m)

< (EIVWOILa+py20)? pam—

where the forth moments exists by the same way used in Proposition 2.1
[8]. Continuing a similar estimation shows that

BI\M3 3 pop =EY  MZ,(4p)? < 0.

p=1

O

THEOREM 3.5. If (2.1) holds for any p > 1 with the assumptions
(A1)-(A4), the family {n™ is relatively compact in the space

n17

CW(;-2(1+D),2D [0, T],

for any given T > 0.

Proof. Let Hy = Wy 2022 and H = w;?+P)D Then Condition
1 of the criteria of tlghtness in Remark 3.0 is satisfied with Hy and H.
From the estimation of (3.14) and (3.15)-(3.17)

Elln? — 75112 2040).0)
< ¢s(T, m)|t — s|sup sup{|In% |-1+D),20 + K3}
n s<T

< (T, m)|t — s|

where K3, ¢s(T,m) and cg(7, m) are some constants. Hence the second
condition of the criteria of tightness in Remark 3.0 is satisfied. O
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REMARK 3.6. We denote S’ as the dual space of Schwartz space S,
which is the space of infinitely differentiable functions with bounded
supports. Also we define

Of(wyv = vn(f(u+n"5v) — f(u)),

for any f : Mi(R) — R and p,v € M (R). Let M. be a &’-valued
martingale which is independent of W {(du, ds) and

(M(@)): = / VA()[7(, V() + Voo (-, V(s))2lds, for ¢ €S,

where Vi (s) = limp 00 2 Y00 | A2(t)dx,(r)- Let Fy : Ry — L(S',8’) and
Fy: Ry xU — L(S',8') be given by

(8, F(s)v) =(pd(, V(s)) + L(V(s)),v)
+(#Vd(, V(s))v + V(L(V(s))p)v, V(s))

and

(¢, Fa(s)v) =(¢B(, V(s),u) + VTa(,, V(s),u),v)
+{oVB(, V(s),u)v + VT ga(-, V(s), u)v, V(s)).

Kurtz and Xiong [8] have showed that any limit of {n”} satisfies the
following SDE on S’:

ne = no + M(t) + /Fl(S)nst + / Fy(s,u)nsW(du,ds).
U x[0,t]
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