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ALMOST KAHLER METRICS WITH NON-POSITIVE
SCALAR CURVATURE WHICH ARE
EUCLIDEAN AWAY FROM A COMPACT SET

YuTAaE KaANG AND Jongsu Kim

ABSTRACT. On R*", n > 2, with the standard symplectic structure
we construct compatible almost Kahler metrics with negative scalar
curvature on a polydisc which are Euclidean away from the polydisc.

1. Introduction

An almost Kahler structure on a smooth manifold M is a triple
(9,w,J) where w is a symplectic form, J an almost complex structure,
and g is an w-compatible Riemannian metric, i.e. w(z,y) = g(Jz,y) for
tangent vectors z,y to M. A manifold with an almost Kahler structure
is called an almost Kahler manifold.

With Gromov’s theory of pseudoholomorphic curves [3] and Taubes’
recent works on Seiberg-Witten invariants [6], the study of almost Kéahler
manifolds is becoming a more interesting subject than ever. However, it
suffered for a long time from a lack of effective approaches with concrete
interesting examples.

In Riemannian geometry one of the interesting problems associated to
a curvature, for example the scalar, the Ricci or the sectional curvature,
is whether there exists a metric on a Euclidean space R™ which has
the curvature negative on a ball and is Euclidean away from it. The
nature of this question concerns the flexibility of the curvature under
consideration. More interestingly it is empirically related to the harder
problem of whether given a manifold of dimension > 3 admits a metric
with the curvature negative, as shown in Lohkamp’s recent works [4, 5].
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Motivated by this, in this paper we ask the above question in the
almost Kéhler category as an approach to almost Kéhler metrics from
a Riemannian viewpoint.

In the general Riemannian case it is not hard to construct a met-
ric on R™ which has the scalar curvature negative on a ball and is
Euclidean outside the ball. Actually, in the afore-mentioned works
Lobkamp proved a stronger result in Proposition 2.1 of [4] and the much
harder case of Ricci curvature in Proposition 6.1 of [5]. In these works
conformal deformation plays a technically essential role. But in a sharp
contrast-we cannot use conformal deformation in almost Kahler cate-
gory because a metric conformal to an almost Kéhler one is not almost
Kahler in general. Therefore to deal with even the scalar curvature one
should find a way distinct from the general Riemannian case.

To construct the desired metrics on the even-dimensional Euclidean
space R?" n > 2, we considered almost Kihler metrics with n-dimen-
sional torus group symmetry. We managed to choose metrics which are
Euclidean outside a polydisc, i.e. the product of 2-dimensional discs,
and have the scalar curvature non-positive inside the polydisc. But the
scalar curvature is zero precisely along some thin subset of the polydisc.
Thus an elaborating argument was needed to perturb the metrics near
this thin subset to get the scalar curvature negative everywhere inside
the polydisc. In sum we proved;

THEOREM 1. On R?*, n > 2, with the standard symplectic struc-
ture there exist compatible almost Kahler metrics which have the scalar
curvature negative on a polydisc and are Euclidean outside of it. Fur-
thermore these metrics can be chosen to be invariant under the n-
dimensional torus group.

The paper is organized as follows. In section 2 we provide prelimi-
naries for almost Kéhler metrics and scalar curvature. In section 3 we
construct almost Kiahler metrics on R* which have non-positive scalar
curvature and are Euclidean outside a polydisc. But these metrics have
zero scalar curvature along a thin subset inside the polydisec. In section
4 we deform the metrics of section 3 near this thin subset to have the
scalar curvature negative inside the polydisc. In section 5 we explain
how to get similar metrics in higher dimensions.

2. Preliminaries

In this section we explain definitions and formulas which will be
needed in later sections.
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A symmetric (2,0)-tensor h (from now on we simply write (2,0)-
tensor as 2-tensor) on an almost Kéhler manifold can be decomposed
as h = ht + h™, where h* and h~ are symmetric 2-tensors defined by
ht(z,y) = 3{h(z,y)+h(Jz, Jy)} and h™(z,y) = 3{h(z,y) —h(Jz, Jy)}
for two vectors  and y tangent to M. A symmetric 2-tensor h is called
J-invariant or J-anti-invariant if h = h* or h = h™ respectively.

Given a symplectic form w on a smooth manifold M, we denote by
), the set of all w-compatible Riemannian metrics. It is well known that
Q, is naturally an infinite dimensional Fréchet manifold. According to
Blair [2], for a smooth curve g; in Q,, with the corresponding curve J; of
almost complex structures, h = %%(t:g is Jy-anti-invariant. Conversely,
for g in §2,, with the corresponding J, any J-anti-invariant symmetric 2-
tensor h is tangent to a smooth curve in Q,,. More precisely, ge” is such
a smooth curve in €, where ge” is defined by ge(z,y) = g(z, "y).
Here h and so e” is understood as a (1, 1)-tensor lifted with respect to
g- So ge*(z,y) = g(x,v) + 9(z, T2, o).

We denote by V, R, r and s the Levi-Civita connection, the Rie-
mannain curvature tensor, the Ricci tensor and the scalar curvature of a
Riemannian manifold (M, g). For tangent vector fields X,Y, Z, W, the
Riemannian curvature tensor R is defined by R(X,Y)Z = VxVyZ —
VyVxZ —Vxy|Z.

For a local tangent frame {e;}i=12.. m of M, m = dimM, we shall
adopt the usual notational convention: Rjju = g(R(e; ej)ex, ) and
rij = r(es, e;5).

In a Riemannian manifold (M, g) the differential at g , in the direction

of a symmetric 2-tensor h, of its scalar curvature s is given in [1], page
63, by

Sg(h) = Ag(trgh) + d4(dgh) — g(rg, h),
where 7 is the Ricci curvature tensor of g, A, is the Laplacian operator,
tryh is the trace of h with respect to g, 64h is the divergence of h which

can be written in local coordinates as (0h)yx = —V"h, and finally d,4(-)
on a 1-form is the formal adjoint of the (usual) differential on functions.

3. Almost-Kihler metrics on R* with non-positive scalar
curvature

In this section we shall find almost Kahler metrics on R* which have
non-positive scalar curvature and are Euclidean outside a poydisc. But
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these metrics have zero scalar curvature along a thin subset inside the
polydisc.
We consider a metric on R* of the form

(3.1) go = f2dr? + 7 d92+h2dp + Z2da

where (7" 9), (p, o) are the polar coordinates for each summand of R* :=
R? x R? respectlvely and f, h are smooth positive functions on R?,

which are functions of r and p only. Let e; = } 8‘1, ey = J; 6?0’ ez = ,13 59,07
eq4 = ’; 55+ A smooth almost complex structure Jy on R* is defined by

Jole1) = ez, Jo(ez) = —ex1, Jo(es) = ey, Jo(eq) = —e3. With the standard
symplectic structure wp on R* the triple (go,wo, Jo) is an almost-Kéhler
structure on R%. The Riemannian curvature components of go of the
form R;j;; are computed as follows;

Rig12 = 3}{2 + 3;2 - % - fg*iy
R1313=%5“% %%*?;Z,
Ryqg = —:—}2 hrfr;;;;fh’% + p;;z - ];):; )
I

3hp — hpp n 3h5 R

Rotsa = =5~ T T T
Joo | fo@fh+ fhy) By fih
Rg323 = th + £ f2h3 + T'f2h - f3h ’

where f, = %’;, frr = %7 etc.. The scalar curvature is

= 2(Ra112 + R3113 + Ra114 + R3203 + Rao24 + R4334)
2 2
Frr N 3f- 32 f; N h,p 3h, 3h5  h?

“HEYE T TRp T e e

The crucial observation in order to show sg, < 0 is that sy, can be
expressed as follows;

3

3 2 h2
352+ (524 M 2

sg0 = —{(f ™) + SOt s
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Setting F = f~2 and H = h™2, we shall find F and H which satisfy

3 3
(3.2) For + ;Fr + H,, + -p—Hp =0.

Set Fp.. + %FT = a(r)B(p) where o, 3 are smooth functions on R which
satisfy at least that

afry=0 forr>1,

B(p) =0 for p>1.

These two functions a and 3 will be specified more below.

Since (r®F}), = r3F,. + 3r2F, = r3a(r)B(p), we do integration with
proper boundary conditions on F' to get

Fr.p) = 806) | (& / ! o) dr) dy + 1.

We now specify the function « as follows; first consider a smooth function
k(y) on R such that

a) k(y) =0 for y<0,y>1,

b) k' W)les < 1¥lcos

c) fl Hy) gy =0,

d)0<frk(y)dy<1 for any r with0 <7 <1

(3.3)

and then define a(y) = %(31’—) Here we may choose one such function k

so that the derivative o of « is zero at exactly three points in the open
interval (0,1) as in Fig.1. Similarly we set

1
H(r / / z)dz)dy + 1,

where ((y) = % and the function k(y) is a smooth function on R

satisfying (3.3). We may choose k similarly to k (or equally if one
prefers) so that the derivative B’ of 8 is zero at three points in (0, 1).
Hence the graph of g is similar to that of .

Then the functions F(r, p) and H(r, p) satisfy the equation (3.2) and

F H=1 for r>1 or p>1,
F, H>0 for r<1 and p<1.
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For such functions F' and H, we have

S0 =T 2F2B {/ / ) de) dy)”
-t [ [ s

From the choices of o and 8 , the derivatives o' (r) and 3 (p) are zero at
ro = 0,71,72,73 and pg = 0, p1, p2, p3, where 0 < 7y, p; < 1, respectively.
It is now simple to check

0 ifr>lorp>1,
Sgo(""p) =40 at (Ti7pj)a 'La] :Oa1,273a
negative if r,p€ (0,1) with r # r;, or p # p;.
0.2 +
0 7“51 7"2 7”=3 i
—0.2+

Fig.1. The graph of a (The graph of § is similar).

Let B = {(r,0,p,0)|0 < r,p < 1,0 < 6,0 < 27} which is a polydisc
and let DY = {(r;,0,p;,0)|0 < 8,0 < 2n} for each ¢ = 0,1,2,3 and
3 =0,1,2,3. The metric gg is Euclidean on B¢, the complement of B,
and sg, is negative on B \ Ui’jzo,l,z,gDU but sg, = 0 on Ui’j=0’1’273Dij.
So to get a metric with the further property that s, < 0 on B, it is
natural to deform the metric gg near Ui,j=0,1,2,3Dij. This will be done
in section 4.

4. Almost-Kihler metrics with negative scalar curvature on
a polydisc, which is Euclidean outside the polydisc

In this section we denote by (go,wo, Jo) the almost-Kéahler structure
constructed in section 3. Suppose that we have any symmetric 2-tensor
1 which satisfies the following;

1) n is Jyp-anti-invariant,
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2) Slgo (n) = Ago (trgon) + 6_90 (59077) - 90(7'90, 77) <0
on D = U; j—0,1,2,3DY,

3) the support of 7 is contained in B.

Then the metric defined by g; = goe™ lies in €, by condition 1) as
explained in section 2. Since sy, is negative on B\ D and zero on D, by
2) and 3) we have sy, < 0 on B for small ¢ by the Taylor series expansion

argument for its scalar curvature; s, = sg, + s'go(n)t + 5;0(77)%E + -
Therefore by 3) we will have wg-compatible almost-Kéhler metrics g,
which are Euclidean on B¢ with sy, < 0 on B for small ¢. To find such
an 7, first we consider the expression of A(trn)+46(dn) at a point p € D
via a local coordinate system. Let p be a point in a component D% of

D, i,j = 1,2,3, and choose a local coordinate x = (z1,z2, 3, z4) near

p such that 3 = f(p)r, o = }%9, x3 = h(p)p, x4 = %o. Suppose

that 7 is a Jg-anti-invariant symmetric 2-tensor such that it is expressed
in the coordinate z by 9 = fqdzs ® day where g = ﬁ(g%, ;9%) are
functions of z; and x3 only. If we express 7 as a matrix 7 = (75;) , then
7 satisfies the condition 1) if and only if it is of the following form ;

11 12 13 14
(4.1) 7= e —a %1 a'bia —alb g
s o lbijia 733 7134
fha —a707 s i —b™27j33
2 ) K2 p(p)

where a = 7o r and b = AR As 77 is determined by six func-

tions 711,712, 713, 7114, 7133, N34, We shall only find these six Ais’s. Note
that at p, 7’s have the following relation:

mi(p) = —N22(p), M33(p) = —7Maa(p), Ma(p) = 723(p), Ma(p) = —72a(p).
We can see that at p

(4.2)  A{tri)lp + (67l = M1,11(p) + 7M33,33(p) + 2M13,13(p) + L(p),

o~ 2.5 .
where 73 1y = aik’g;l and L consists of lower order terms. If we choose

f1(p) = —7e2(p) to be a nonzero number ¢ and all other 75 (p) = 0 then
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atp

9o(rge, M) = c(T11 — T22)
= ¢(R2112 + R3113 + Ra114 — Ri221 — R3293 — Ry224)

= —2¢c2tL (fp = h’T =0 at p)

HII
—c— / /xa )dz)d

#0 (Recall the graph of 3).

We will take the value c to be 1 or —1 so that go(ry,,7) > 0. For these
values f11(p) = —fl2(p) = 1, fha(p) = 3(p) = Tha(p) = Misa(p) =

f33(p) = 0 and any values 2 i st t(p), 33,33(p) and 713,13(p), we choose the
value 11,11(p) so that (4.2) becomes zero. Then we can choose smooth
functions 7e (1, z3) on R*, extending these values at p, with support in
a small neighborhood U C B of p. Note that we may and will choose
U to be a neighborhood of D% because 7,;’s are functions of 1 and z3
only.

Since go(rg,,7) and the equation A(¢r7) + 6(d7) = 0 are S' x S1-
invariant, these functions fjs;’s determine a Jg-anti-invariant symmetric
2-tensor 7 with support contained in a neighborhood U C B of D¥
satisfying A(trf}) + 6(57) — go(rg,, ) < 0 along DY.

In the case that p € DY where i =0 or j =0, 7 = cridr? — %;dw +

cp? — %f—da2 for some constant c satisfies A(tr) + 8(67) — 4cas r — 0
or p — 0. Multiplying 77 by a smooth cut off function with support in
a small neighborhood of D% and choosing an appropriate ¢ we obtain
a Jy-anti-invariant symmetric 2- tensor 71 with support contained in a
neighborhood of D¥ satisfying s . () < 0 along D%.

So far for each component D” , 1,7 = 0,1,2,3 we have chosen a
neighborhood U% C B of DY and a Jy-anti-invariant symmetric 2-tensor
7% on R* such that

i) 71" satisfies s, () < 0 along D¥.

ii) The support of 7%/ is contained in U%.

Moreover U%’s could be chosen small so that

iii)U%’s are disjoint each other.

Then n = Z? =0 7 is the desired Jy-anti-invariant symmetric 2-tensor.

REMARK. In the above we have chosen M1(p) = —7a2(p) = £1 and

all other 7 (p) = 0. But in fact, whatever values 75 (p), g’;ﬁ: (p), M33,33(P)
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and 71313(p) we choose we can choose 711,11(p) so that A(trq)|, +
8(07)|p — 9o(r0,7)|p to be negative. Extending these values at p, we
can also obtain a Jp-anti-invariant symmetric 2-tensor 77 we want.

Since f and h are functions of r and p only and the Jp-anti-invariant
symmetric 2-tensor 7 is S* x Sl-invariant, the metric g; = goe™ is also
S1 x Sl-invariant. Therefore we proved the following

PRrOPOSITION 1. Let B! C R? be an open ball of radius 1 and B =
B! x B! ¢ R*. With the standard symplectic structure on R*, there
exists an S' x S'-invariant compatible almost-Kéhler metric g on R*
which has the scalar curvature negative on B and are Euclidean on B¢,
the complement of B.

REMARK. It is not hard to show that the S! x S'-invariant metrics
on R* of Proposition 1 can also be chosen to have the form of (3.1). So
it is interesting to find such a form of metrics instead of going through
the perturbation of the section 4.

5. Generalization to R??,n > 3
We generalize Proposition 1 to higher dimensions. The method is

similar to 4-dimensional case.
Let go be a metric on R??, n > 3, defined by

go= > (fidr}+ 1d92>
=1

f2
where (r;,6;), i = 1,...,n, are the polar coordinates on R? and f;’s
are smooth positive functions on R2?" depending only on the variables
T1,...,Tn. Let €21 = %aiw €9 = fl 30, and Jg be the almost complex

structure defined by Jy(eg;i—1) = ea;, Jo(e2;) = —e2i—1. Then with the
standard symplectic form wy on R?" the triple (go,wo, Jo) is an almost-
Kahler structure on R??. The scalar curvature of gg is

Sgo fzzz fi,z zz z%‘+ 2,1
%'Z(P”’m i) ZW

1<j

Z{(f 2)“ _ 2) } E f2f2 )

i<j
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: 2p —2 .
where f;; = g—rfj, fijk = afkg;j. Set F; = f; 2 i=1,...,n. We shall
find the functions F; so that they satisfy

1)

3
(5.1) > (Fai+ = - Fii) =0.
i=1
SetFm-f- SFi = ai(r)---ad(rp)i=1,...,n— lanannn+ Fun =
-yt al(rl) -4 (rn), where ai(ry), i = 1,...,n 1,j= 1,...,nare
smooth functions on R which satisfy at least
a;(rj) =0 for r; > 1.

The functions a;'-’s need to be specified more. Let k;(t) be smooth func-

. e . dk’
tions on R satisfying the properties a), ¢), d) of (3.3) and | (t)|c, <
: dk:
T—ll—m|t3|co- Set a(t) = Z—L dt 2(t). Moreover we choose such functions
: da
k}’s so that each derivative d—t of a;- is zero at exactly three points in
- the open interval (0 1) and that the sets Ai = {t € (0, 1)|a'( ) =0} and

Bl = {t € (0, 1)[ = (t) = 0} are disjoint each other, i.e. AZ NAF = ¢,
BZ N BF = ¢ for any pairs (i, ) # (k,!) and Al NBF=¢ for any pairs

(2, 7), (k,0).
Define the functions F; ,i=1,...,n—1 , and F, by

Fi(ri,...,mn) = 0i(r1) -~ ap(rn) / / al(x) dz) dy + 1,

’(n
Fo(r1s-.y7n Z%(Tl) a1 (rn-1)
/ / ol (x)de)dy + 1.
Then the functions F;, i = 1,...,n — 1, and F, satisfies the equation
(5.1) and

EF, F,=1 if rp, > 1 for some k,
F, H,>0 if rp <1 for all k.

The scalar curvature becomes
1 F; F;
Sgo("'l,...,’r‘n) = 2 (__-lF‘2 + F;F]21)
’L
1<g
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which is zero if 7, > 1 for some k and non-positive if r; € (0,1) for all k.
In order sy, to be zero at (r1,...,r,) with all 7 € (0,1), Ffj =0 and
Fj%i = 0 for all 7 < j. It is not difficult to check that this is impossible

because we have chosen a;’s so that the sets A;’s and B;.’s are disjoint
each other. Therefore sy, becomes zero only if one of r’s vanishes. At
these points, by a similar argument in Section 4, we can perturb the
metric go so that its scalar curvature becomes negative.

Let B = {(r1,91,...,rn,9n)|0 <re < 1,0 S Hk < 27T,k = 1,...,’_/1}

n—times

— e
be a polydisc and let 7% = S! x --- x S € R?" be the n-torus group.
Our metric constructed above is T"-invariant, Euclidean on B¢ and its
scalar curvature is negative on B.
In summary, we proved

PROPOSITION 2. Let B' ¢ R? be an open ball of radius 1 and B C
R?*, n > 3, be the n-product of B'. With the standard symplectic
structure on R?" there exists an T™-invariant compatible almost-Kéhler
metric g on R?™ which has the scalar curvature negative on B and are
Euclidean on B°.

Proof of Theorem 1. In Proposition 1 and 2 we proved the statement
of Theorem 1 when the polydisc is standard, i.e. the product of the
2-dimensional discs of radius 1. But our construction of metrics just
works for general polydiscs which are the products of discs of variable
radii. This finishes the proof. O

In this article we have studied the scalar curvatures of almost Kahler
metrics only on the Euclidean space with the standard symplectic struc-
ture. One might try to generalize this to an arbitrary almost Kéhler
manifold. An interesting question along this line is whether every closed
symplectic manifold admits an almost Kahler metrics with negative
scalar curvature.
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