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OPTIMALITY CONDITIONS AND DUALITY MODELS
FOR MINMAX FRACTIONAL OPTIMAL CONTROL
PROBLEMS CONTAINING ARBITRARY NORMS

G. J. ZALMAI

ABSTRACT. Both parametric and parameter-free necessary and suf-
ficient optimality conditions are established for a class of nondiffer-
entiable nonconvex optimal control problems with generalized frac-
tional objective functions, linear dynamics, and nonlinear inequal-
ity constraints on both the state and control variables. Based on
these optimality results, ten Wolfe-type parametric and parameter-
free duality models are formulated and weak, strong, and strict
converse duality theorems are proved. These duality results con-
tain, as special cases, similar results for minmax fractional opti-
mal control problems involving square roots of positive semidefinite
quadratic forms, and for optimal control problems with fractional,
discrete max, and conventional objective functions, which are par-
ticular cases of the main problem considered in this paper. The
duality models presented here contain various extensions of a num-
ber of existing duality formulations for convex control problems,
and subsume continuous-time generalizations of a great variety of
similar dual problems investigated previously in the area of finite-
dimensional nonlinear programming.

1. Introduction

In this paper, we shall establish necessary and sufficient optimality
conditions and construct several parametric and nonparametric duality
models for the following minmax fractional optimal control problem :

(P) Minimize max e FEO80:0 KO0 ko + IEOu(t) o]
S5 o), u),1) — IMD2Ollne — INEuOllne) dt
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subject to

(1) z(a) =0,  z(b)=0,

(2) Dx(t) = A(t)x(t) + B(t)u(t), t € [a,b],
(3)

hj(2(8), u(t), ) + |1 B (D)2(0)lpg) + Qs (Hult)ley <0, t € [a,8], j € s,

(4) z € C"[a,b], ue PWS™"a,b],

where C™[a, b] is the space of all continuous n-dimensional vector func-
tions z : [a,b] — R"™ (n-dimensional Euclidean space) defined on the
compact interval [a,b] of the real line R, with the graph norm [z| =
|zlloo + | D2||co, where the differentiation operator D is given by

y= Dz o z(t) = / y(r)dr;

thus D = d/dt except at the discontinuities of the piecewise smooth func-
tion y : [a,b] — R, PW.S™[a,b] is the space of all piecewise smooth
m-dimensional vector functions defined on [a, b], with the uniform norm
-\ fiy gi, i er={1,2,...,r}, and hj, j € s, are continuously differen-
tiable real-valued functions defined on R™ x R™ X [a, b]; A(t), B(t), Ki(t),
Li(t), M;(t), Ni(t), P;(t), and Q;(t),i € r,j € s, are, respectively,
nXnnXmkXxn b xmmgXnmn Xxm,pj xn, and ¢;j X m
matrices whose entries are continuous real-valued functions defined on
[a, 0] 1| - x> 1 Mlecys 1+ lmgiys |- Dniys |- lpsys @nd |- llgsys 2 € 1y 5 € 5,
are arbitrary norms, and for each ¢ € r, the numerator of the inner
objective function is nonnegative and its denominator is positive for all
state-control pairs (z,u) satisfying the constraints of (P).

Finite-dimensional counterparts of (P) are known as generalized frac-
tional programming problems in the literature of mathematical program-
ming. These problems have arisen in the areas of multiobjective pro-
gramming [1], approximation theory [2, 3, 14, 24], goal programming [7,
13), and economics [23], among others.

The notion of duality for generalized linear fractional programming
was initially considered by von Neumann [23] in his investigation of eco-
nomic equilibrium problems. More recently, various optimality criteria,
duality formulations, and computational algorithms for several classes of
generalized linear and nonlinear fractional programming problems have
appeared in the related literature. A fairly extensive list of references
pertaining to various aspects of these problems is given in [30].
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In contrast to the finite-dimensional case, infinite-dimensional prob-
lems of this type and, in particular, optimal control problems with gener-
alized fractional objective functions have not yet received much attention
in the literature of optimization theory and, consequently, at present no
significant results of any kind are available for these problems. In fact,
it appears that so far [25] and [29] are the only two papers which dis-
cuss certain aspects of this problem. Specifically, a Lagrangian-type
dual problem was identified for (P) in [25] with the help of a Gordan-
type theorem of the alternative, whereas a different dual problem along
with saddle-point-type optimality criteria were presented in [29]. These
results were obtained without assuming any differentiability conditions.

If in (P) we set » = 1, then the resulting special case is called a
fractional optimal control problem. Some interesting applications of op-
timality conditions for problems of this type (without the norms) are
discussed in [19-22].

In the present study, we shall establish, under suitable differentia-
bility and convexity assumptions, both parametric and nonparametric
necessary and sufficient optimality conditions, construct several para-
metric and parameter-free duality models, and prove appropriate dual-
ity theorems. Our approach to achieving these goals is based on a set
of optimality conditions for a related problem discussed in [6}, and two
ancillary problems that are intimately linked to (P).

The rest of this paper is organized as follows. In Section 2 we re-
call a set of necessary optimality conditions given in [6] for a special
case of (P). In Section 3 we utilize these optimality conditions in con-
junction with some other auxiliary results to establish both parametric
and nonparametric necessary optimality principles for (P). We begin
our discussion of duality for (P) in Section 4 where we introduce two
parametric duality models and prove weak, strong, and strict converse
duality theorems under appropriate convexity assumptions. In Sections
5 and 6 we formulate a total of eight parameter-free duality models for
(P) and prove appropriate duality theorems. Finally, in Section 7 we
briefly discuss an important special case of (P) which involves square
roots of positive semidefinite quadratic forms.

It is evident that all the results obtained for (P) are also applicable,
when appropriately specialized, to the following classes of optimal con-
trol problems with fractional, discrete max, and conventional objective
functions, which are particular cases of (P) :

(P1) Minimige Jal1 @000+ KOO llcp + L3 @) e
S [lgr (@(t),u(®),t) = [ (O2(O) ) — [N (Oult) lngy] dt
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b

(P2) Minimize max ) [Fi(z(®), u(®), t) + 1 Ki(£)2(Ollres) + [ Le(Ou( o] dt,

b

(P3)  Minimize [ 1£1(a(0), ), )+ 1K (Ol + I (Oult)co )

where F (assumed to be nonempty) is the feasible set of (P), that is,
F = {(z,u) € C"[a,b] x PWS™{a,b] : (1) — (3) hold}.

Since in most cases the results established for (P) can be modified
and restated for (P1)-(P3) in a straightforward manner, we shall not
explicitly state these results.

Although different concepts of duality have been discussed for various
types of conventional variational and optimal control problems (see, e.g.,
[11, 15, 16, 17] and the references therein) constrained optimal control
problems like (P1) and (P2) with nonstandard objective functions have
not received much attention in the area of control theory. In contrast,
their static analogues have been studied extensively during the last three
decades. Recent surveys of fractional programming are given in [8, 18],
and a fairly extensive bibliography is included in [18|. Similarly, a de-
tailed account of discrete (and continuous) minmax theory and methods
is available in [9].

Optimization problems involving norms occur in many areas of the
decision sciences, applied mathematics, and engineering. These prob-
lems are encountered most frequently in location theory, approximation
theory, and engineering design. A number of references dealing with
various aspects of these problems are given in [26].

2. Preliminaries

In our discussion of optimality conditions for (P) in the next section,
we shall need an optimality result of [6] for the problem

b
(P4) Minimize / [f(z(8),u(t),t) + ICH)z(E)lc + I E()ult)lle] at,
a
subject to (1)-(4) and
b
/ [Fre(z(t), u(t), t) + [ e @)zl aky + [Tl llaw) dt <0, ke v,
a
where f and F, k € v, are continuously differentiable real-valued func-

tions defined on R™ x R™ X [a, §]; C(t), E(t), It(t), and Ji(t), k € v, are,
respectively, ny Xn, my Xm, cx Xn, and di X m matrices whose entries are
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continuous real-valued functions defined on [a, b], and || -{|c, || lle, |- leqi)
and || - ||4x), k € v, are arbitrary norms.

Although this problem is not explicitly considered in [6] in the ex-
act form stated above, the method employed in [4, 5, 6] can easily be
modified and adapted for this problem. This would lead to the following
optimality result for (P4).

THEOREM 2.1. [6] Assume that the functions f(.,.,t),h;(.,.,t),j € s,
and Fy(.,.,t,k) € v, are convex on R™ x R™ throughout [a,b], that
the Fréchet derivative of the linear map (z,u) — Dz — A(t)z — B(t)u
is surjective at a feasible solution (z*,u*) of (P4), and that the con-
straints of (P4) satisfy Slater’s constraint qualification, that is, there
exists (Z,%) € C™[a,b] x PWS™[a,b] such that Z(a) = Z(b) = 0,

Di = A(t)i + B(t)i, t € [a,b],

hy(Z,4,1) + 1P (D)2l 5 + 1Qs(Dllay <0, j €5,

b
/ [Fi(Z,4,t) + [Tk(O)Z | k) + 1Tk (B)llary) dt < 0, &k € v,

for all t € [a,b]. Then (z*,u*) is an optimal solution of (P4) if and
only if there exist v € PWS"[a,b], w € PWSila,b], z € RY, a €
PWS™[a,b], B € PWS™, ¢} ¢ PWSPifa,b], 17 € PWS%[a,b],j €
s; 0% € PWS%[a,b], £k ¢ PWS%][a,b], k € v, such that the following
relations hold for all t € [a,b] :

Vif(@",utt) + O( t)Ta(t) + A(t)To(t)
+Zw3 [V1hj(a*,w,t) + Py ()¢ (1)) +

Z 2k [V1Fk(z*,u”,t) + Ie() T (8)] + Do(t) = 0,
k=1

Vaf(z*, u*,t) + E(t)TB(t) + B(t)Tu(t)
+ > wi(t)[Vahy(a*,u*, t) + Q; (1) TP ()] +

=1

ZV: Zk[VQFk(CL’*, u*,t) -+ Jk(t)Tfk(t)] =0,
k=1
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D wi()[hi(a*,ut 1) + [P (0)2* |0 + 1Q5 (8w () = 0,
j=1

b Vv
/ D an[Frlz ut, t) + | Te(B)x* oy + 16 (00w lagey] dt = 0,

¢ k=1
@l <1, 1801 < 1,
1Oy <L P @l <1 €,
1655w < L, 1€F Ol < 1 ke,
a®)TC(t)z* = |C(H)z*les BE)TE(t)u* = [|E(t)u|e,

FOT Pt = 1P ()2 Iy, 7 (1) Qi (00w = Qi (t)w*llg(s), 7 € 8
8° ()" In(t)z* = | Te@)"[leys €5 Tu(tyu* = [Tk (O)u" law), &k € 2,
where PWS% [a,b] = {w € PWS®[a,b] : w(t) > 0 for all t € [a,b]}, RY
= {z € R” : 2 > 0}, V¥ and V¢ denote the partial gradients of the
function ¢ : R™ x R™ x [a,b] — R, (z(t), u(t),t) — ¥(z(t), u(t),t), with
respect to the first and second arguments, respectively, that is, V11 =

(O/0z1(t), -+ , 0 /02, ()T and Voo =(0/Ouy(t), -+ ,0%/Oum(t)T;
MT is the transpose of the matrix M, and | - ||}, denotes the dual norm
to || - lla-

In the above theorem, the argument ¢ of the vector-valued functions
Z,u,x*, and u* was omitted for the sake of notational simplicity. This
practice will be continued throughout the sequel.

3. Optimality conditions

Using a Dinkelbach-type [10] indirect approach based on Theorem 2.1
and a nonfractional equivalent problem, we first establish in this section
a set of necessary and sufficient optimality conditions for (P), and then
show, with the aid of a second equivalent problem, that they are, in fact,
also sufficient for optimality of a feasible solution of (P). The auxiliary
problem making this approach possible has the following form :

b
(Pu) 1\/1(;1}52%26 max /a {fi(z,u,t)
+ 1K ()l oy + 1 La(E)ulley — mlgi(z, u, t) — Mi(t)x||me

— INs (t)ullngsy)l} dt,

where p € Ry = [0, 00) is a parameter.
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This problem can be utilized to investigate certain aspects of (P). The
relationship between (P) and (Pp) needed for our present purposes is
stated in the following lemma whose proof is straightforward and hence
omitted.

LEMMA 3.1. Let u* be the optimal value of (P) and let v(p) be the
optimal value of (Pu) for any u € Ry such that (Pu) has an optimal
solution. If (z*,u*) is an optimal solution of (P), then (z*,u*) is an
optimal solution of (Pu*) and v(u*) = 0.

It is clear that (Pu) is equivalent to the following problem :
(EPy) Minimize £
subject to (z,u) € F, £ € R, and

b
/{fi(w’uvt)+HKi(t)$“k(i)+||Li(t)un€(i)”/J'[gi(m’uat)_”Mi(t)me(i)
— [INi(®)ullnp)]  dt < €, ier

In view of Lemma 3.1 and the equivalence between (Pu) and (EPpy),
it is clear that if (z*, u*) is an optimal solution of (P) with optimal value
p*, then (z*,u*, £*) = (z*,u*,0) is an optimal solution of (EPu*). We
shall make use of this observation in the proof of Theorem 3.1 which
contains the main result of this section. Prior to stating this theorem,
however, we specify our basic assumptions which will remain in force
throughout the sequel.

(a) The functions fi(.,.,t), —g(.,.,t),i € r, and h;(.,.,t),j € s, are
convex on R™ x R™ throughout [a, b].

(b) The constraints of (P) satisfy Slater’s constraint qualification (see
Theorem 2.1).

Despite the above convexity assumptions, (P) is not a convex problem
because of the fractional nature of its objective function. However, this
difficulty can be circumvented by resorting to the intermediate problems
(Pu) and (EPu) which are convex problems by virtue of our assumptions
specified in (a) above and in the description of (P).

THEOREM 3.1. Let (z*,u*) be an optimal solution of (P). Then
there exist A* € R.,Y7 , AF = 1, p* € Ry, v* € PWS™[a,b], w* €
PW S5 (a,b], a* € PWS*[a,b], 8* € PWS%[a,b], v** € PWS™[a,b],
§* € PWS™a,b),i € r, (Y € PWSPi[a,b], n*) € PWS%[a,b],j € s,



828 G. J. Zalmai

such that the following relations hold for all t € [a,b] :

DO VifGE" wr ) + Ki(t)Ta(2)

i=1
P [Vigi(z®,u', 8) = M) Ty ()]} + A" (t)

3 WOV ) + BOTCI0)] + Dv (1) =0,
j=1

6) D N{Vafil@,ur,t) + L(H)TBY(t)

i=1
— 1 [Vags(z*,u*, t) — Ny()T 8 ()]} + B()"v* ()

+ Y wi(t)[Vahy(a*, v, ) + Q;() n™ ()] = 0,
j=1

S

(M) Do wi@®)hi(a™,um,6) + [Py 0)a" o) + 1Qs (Dl = 0,

Jj=1
® [ ZA (a0 0) + 1K@ iy + 120 gy
- (a0, ) = MO g

= INi(®)w" [l } dt = 0,

9) Nl @l <1 18Ol <1
IV Ol <1, 18°Olhe <1, ier,

(10) ICT @5 <L 9@, <1, jes,

(11) o) Ki(t)e" = [Ki(t)z" Ik, 7 ()T Li(t)e" = || Li(8)u*[legs),

T M7 = | M ()2 sy, 58T Ni(t)u™ = | Ni(0)u"llngsy, i € 1,

(12)
7

1
IO B = 1P lpgy, 77 ()7 Q5 (0" = 11Q; (t)u”lly, 7 € 5
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Proof. Since (x*,u*) is an optimal solution of (P), by Lemma 3.1,
it is an optimal solution of (Pu*), where u* is the optimal value of
(P). This implies that (z*,u*,&*) = (z*,u*,0) is an optimal solution
of (EPu*). By hypothesis, there exists (Z,4) € C"[a,b] x PWS™]a, b,
with Z(a) = Z(b) = 0, at which Slater’s constraint qualification holds
for (P). Because of the special structure of the constraints of (EPu*),
it is obvious that for some 5 € R, Slater’s constraint qualification holds
for (EPp*) at (£,4,€£). Therefore, by Theorem 2.1 (applied to (EPu*)),
there exist A*, p*, v*, w*, o*, B*, v*, 6", i € r, ¢*7, and n*, j € s,
as specified above, such that (5) -(12) hold for all t € [a, b]. O

We next show that the necessary optimality conditions of Theorem
3.1 are also sufficient for optimality of (z*,u*). For this we need two
simple lemmas. The first lemma is a well-known result, called the gen-
eralized Cauchy-Schwarz inequality, whereas the second lemma provides
an alternative expression for the objective function of (P) whose proof
is straightforward and hence omitted.

LEMMA 3.2. [12] For any y,z € R, one has yTz < ||y||||z|*.

LEMMA 3.3. For each (z,u) € C"{a,b] x PWS™|a,b], one has

_ Jolfilm,wt) + [ Ki(O)zllke) + | Li()ullg) dt
p(z,u) = max —
sisr [olgie,u,t) — M)z llime) — INi(ulln) dt
L Sl ) + K@l + 1 LiEullew] dt
Aed [0S Nlgs(@wt) = [ Ma(8)al iy — | Ni(E)ullngs)) dt

where

A={,\eR’;:‘iAi:1}.

i=1

THEOREM 3.2. Let (z*,u*) € F, let u* = p(z*,u*), and assume that
there exist \* € A, p* € Ry, v* € PWS™a,b], w* € PWS[a,b], o™ €
PW S¥i[a,b], 5* € PWS%[a,b], v** € PWS™i[a,b], §* € PWS™[a,b],
i €r, (Y € PWSPila,b], n* € PWS%|a,b], j € s, such that (5)-(12)
hold for all t € [a,b]. Then (z*,u*) is an optimal solution of (P).
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Proof. Let (z,u) be an arbitrary feasible solution of (P). Keeping in
mind that A* > 0, p* > 0, and w*(t) > 0 for all ¢ € [a, b], we have

[ 3Rt IOy + 1Ol

=1
— (082, 4,8) = IMi(D2lmeiy = | Ni(®)ullngo] | dt

b T
= / > Af{fi(% u, t) + | K (8l ey + | Lit)ull e

@ =1
~ p*[gi(z, u,t) — | Mi() 2 lmey — [N:(O)ulln)
— filz*, v, t) — o ()T K (t)z* — 8% (t) T Li(t)u*
+ pgi (@, w*, t) — y() T M (t)z
— 8 ()T Ni(t)w’] } dt (by (8) and (11))

/Z)\ Vlfzx* w*, )T (z ~ z*) + Vo fi(z*, u*, )T (u — u*)

— W Vagi(a®, ut, )T (& — 2%) + Vagi(e*, u*, )T (u — u*)]
+ [IKi(®)2 ey + |1 Li@ulleq + M*lle’(t)wllm(i) + p* | Ns(t)ullngs)]
— (T Ki(t)z* — ()" Li(t)u* — 'y (1) My (t)z”
_ ,u*&*i(t)TNi(t)u*]} dt
(by the convexity of f;(.,.,t) and —gi(.,.,t), i € r)

b T
= / {ZAZ‘ {I=a " ®TKi(t) — O Mi())(z — 27)

+ [T Li(t) — p* 8 (0T N} — u*) + [ Ki(®)z(®)1kgsy
+ I Li@®ullesy + w1 Mi@)Tmey + w71 Vi () ullnes)]
)T Ki(t)a® — B(8)" Li()u” — w™y™ (1) Mi(t)z”

— & ()TN () } {'u +Zw )[Vihj(z*, u*, t)T
+¢9(6)TPy(t) + Du*(t >T}<x )

{ +Zw )[Vahj(z*,u*, )T
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+ 79 (57 Q;(1)] u— w) f dt (by (5) and (6))
b r . .
> [{ XN IK©sllplla™ Ol = w IOl 7™ Ol
@ =1

— ILa(E)ulle 18 (D)1 — - IN el 18 @l + 1K@l
+ 1 Li(Oulleqy + w1 M (8) lmeay + 17|V ()ullng)]
+v*(t)T[Dz — Dx* — A(t)(z — =*) — B(t)(u — u*)]

'Zw I Ozlp)¢ Ol + Q5 (ullygy I (D)l55)]
+ _Z Wi ([CT (T Pi(t)a + 9 (0 Q; (t)ur]

+ Z wj (z*,u*,t) — hj(z, u,t)]} dt (by Lemma 3.2, integration
by parts, and convexity of h;(.,.,t),j € 8)

b
> / {v*(t)T[Da: — A(t)z — B(t)y] - v*()T[Dz* - A(t)z* — B(t)u’]

+Zw )y, 8) + CI @ Bi(t)a + () Qs (b))

—Zw iy, w,1) + 1Py ()l + Q5 (Bullygy) b dt

(by (9) and (10))
>0 (by (7), (12), and feasibility of (z*,u*) and (z,u)).

Now using this inequality and Lemma 3.3, we see that

(2, 1) = ma Je S Nilfilwu ) + 1K)l + 1Ll db
EN J2 S Nilgi(w, w,t) = | M)z ]lmgsy — | Vi) tllngs)] dt
f iz M fi(@ut) + | K2k + 1| Li(t)ullg)) dt
f Yici Mlgi(z,u, t) — |Mi(#) 2| mey — [|N: (D) ullne] dt
> p* = p(z,u’).

Since (z,u) was an arbitrary feasible solution of (P), we conclude from
the above inequality that (z*,u*) is an optimal solution of (P). O
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A review of the steps of the above proof will readily show that the
following slightly modified version of Theorem 3.2 is also valid.

THEOREM 3.3. Assume as in Theorem 3.2 except that (5) and (6)
are replaced by the following inequalities:

N1 il w7 + 0 (T Kilt) - ' [Vaga(a, 1)
=1

— 7O MO} + o () TAR) + Y wi(B)[Viki(e, ut 6T
j=1

+ CIOTR ()] + Dv () fa—a*) 2 0

for all t € [a,b] and x € C™[a,b] such that (z,u) € F for some u €
PWS™[a, b],

S NV il ut )T + 87 () L)
i=1
— p*[Vagi(z®, w, )T — 6T Ni(1)]} +v* (1) B()

+ Zw;(t)[Vth(:L‘*,u*,t)T + n*j(t)TQj(t)]}(u —u*) >0
i=1

for all t € [a,b] and w € PWS™[a,b] such that (z,u) € F for some
z € C"[a,b]. Then (z*,u*) is an optimal solution of (P).

In the next section, we shall see that the contents of Theorems 3.1
-3.3 provide clear guidelines for developing a parametric duality theory
for (P). In particular, the two versions of the sufficiency criteria can be
utilized to construct two dual problems for (P). We shall elaborate on
the differences between Theorems 3.2 and 3.3 later in the context of
these duality formulations.

The optimality conditions stated in Theorems 3.1-3.3 contain the pa-
rameter u* which was introduced as a result of our indirect approach via
the auxiliary problem (Pu). However, from the form of these optimality
conditions it is evident that this parameter can readily be eliminated.
Indeed, this can be done by simply solving for u* in (8), substituting
the result in (5) and (6), simplifying, and redefining the multiplier vec-
tors v*(t) and w*(t). This process leads to the following parameter-free
versions of Theorems 3.1-3.3.
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THEOREM 3.4. A feasible solution (z°,u°) of (P) is optimal if and
only if there exist \° € A, v° € PWS™[a,b], w® € PWSi[a,b], o €
PWSki[a,b], 5% € PWS]a,b], 4% € PWS™[a,b],6% ¢ PWS™|a,b],
icr, ¢ ¢ PWSPi[a,b], n°) € PWS%[a,b], j € s, such that the
following relations hold for all t € [a,b] :

D OXH{T (2,6, AV filz®, w0, 1) + Ki(t) e (2)]

i=1
— ®(a°,u®, A)[Vagi(z®, u®, 1) = Mi(6) Ty (0)]} + A(t)Tv°(2)

+Zw M V1hi(z®,u,t) + Py(t)T ¢ (t) ]+Dv t) =0,

Do X{ T (2, w0, 3°)[Vafi(a®,u®, 1) + Li(t) 6% (2)]

i=1
— ®(2°,u°, X°)[Vagi(a®, u®, t) — Ni(t)T 8% (¢)]}

+ B(t)Tv°( +Z'w Vahi(z®,u°,t) + Q; (1) 0 (1)] = 0,

(13) D wi(Olhy(e®,u,t) + 1P (1)2° o) + Qs (1w’ llg)) = O,
j=1

D(x°,u°, A°)

14 Cu’)=—"}7">1-—"1—=
(14 Pl u) = G s ey

(15) el <1 18% Ol <1,
IV Ol <1 18 Olne <1, i€,

(16) Il <1, I @l <1 J€s,

(17) o) Ki(t)a® = ||Ki(8)z° [xqe), BT Li(t)u® = |Ls(t)u’ |y,
V)T Mi(t)a® = | Mi()2°lmgs), 6% (O Ni(t)u® = [INi(t)u°|ln, i € 1,
(18)

¢CI)TPi(6)z° = | Pi()2° i), 1™ ()7 Qi (8w = 1Q;()u g, 7 € s,
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where

b T
®(2%,u,A°%) = / > X fia®,w ) + 1K (02 g + [ La(t)u’ o) dt
¢ i=1

and
v, = [ ZA" 01207, )= MO ey = NSO )

THEOREM 3.5. A feasible solution (z°,u°) of (P) is optimal if and
only if there exist A°, v°, w°,a®, 8%, v, 6%, i € r, (¥, and 0, j €
s, as specified in Theorem 3.4, such that (13)-(18) and the following
inequalities hold for all t € [a,b] :

{ ST, ) [Vfifa®, u, )T + o ()T K1)
=1
— ®(z° v’ /\°)[V19i(x° u®, )T — 2 () T Mi())}

+Zw [V1hy(2%,u, ) + ¢ (1) Py (1)
+ Dv°(t) }(:cﬂﬂv)ZO

for all t € [a,b] and z € C™[a,b] such that (z,u) € F for some u €
PWS™[a, b],

{ Z A{W(2°,u°, \°) [Va fi(z®, u, t)T + 8% (t)T Ly ()]
i=1
— ®(z°,u®, X°)[Vagi(z®, u®, t)F — 6% ()T N; ()]} + v°(t)T B(t)

+Zw; )[Vah (2, u°, )T +n°j(t)TQj(t)]}(u—u°)ZO

for all t € [a,b] and u € PWS™[a,b] such that (z,u) € F for some
z € C"[a, b].

Theorems 3.4 and 3.5 form the basis for constructing several parame-
ter-free duality models for (P). They will be discussed in Sections 5 and
6.
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4. Duality model 1

In this section, we formulate two parametric dual problems for (P)
and establish weak, strong, and strict converse duality theorems. These
problems, whose forms and features are motivated by Theorems 3.1-3.3,
can be stated as follows :

(DI) Maximize y subject to (1), (4), and
(19)
S M{Vafilw,u,t) + Ki(t) ol (t) — n[Vigi(z,u,t) — M)y (£)]}

i=1
+AO) v(0)+)_ wi()[Vik(e,u, t)+P; ()T (O)]+Du(t) = 0, t € [a,b],
J=1
(20)
D A Vafilw,u,t) + L) B) — u[Vagi(z, u,t) — Ni(t)"6 (1)) }

i=1

+ B(#)Tu(t) + Zw] [Vahi(z,u,t) + Qi) T/ (#)] =0, t € [a,b],

(21)
b T
/ { D A fumu ) + () Ki(t)z + B ()T Li(t)u — plgi(w, u, t)
a " 4=1
()T M (t)x — (]} — vt TIDz — A(t)z — B(t)u]

+ 5" wi )k, u ) + F (TPt + nj(t)TQj(t)u]} dt >0,

=1

(22) llo' Wiy <L 18Ol <1 IV Ol <1,
I8 @) 5 <1, t€lab], icr,

(23) 17O <L I @Bl <L telad], jes,



836 G. J. Zalmai

(2i1\)6 A, p € Ry, v € PWS™a,b], w € PWSS[a,b), o' € PWS*]a, b,
B € PWS%[a,b],7* € PW8§™[a,b], 6 € PWS™[a,b),
i €r; ¢ € PWSPi[a,b], ¥ € PWS%[a,b], j € s;
(DI) Maximize p subject to (1), (4), (21)-(24), and
(25)

{ Z A{ V1 fi(m,u, )" +at () Ki(t) = u[Vags(e, w, )T =7 ()T My ()]}

)T At +ij [V1h;(z, u, )T+ (8)T Py (£)]+Do(?) }(a‘:—m)ZO

for all t € [a,b] and Z € C"[a,b] such that (Z,u) € F for some u €
PWS™(a, b,

(26)
{ZA (Vafi(m, u,t)T + B &) Li(t) — p[Vags(z, u, )T — 5(t)TN;(£)]}

+o(®)TB(t) + Z w; (8)[Vah;(z,u, )T + 17 (t)TQj(t)]}(ﬁ —w) >0
j=1
for all ¢ € [a,b] and @ € PWS™[a,b] such that (z,u) € F for some
z € C™a, b].

Comparing (DI) and (DI), we observe that (DI) is relatively more
general than (DI) in the sense that any feasible solution of (DI) is also
feasible for (DI), but the converse is not necessarily true. Moreover,
we see that (19) and (20) together form a system of n + m equations,
whereas (25) and (26) are two inequalities which in general cannot be ex-
pressed as equivalent systems of equations. Evidently, (DI) is preferable
to ([)I) from a computational point of view because of the dependence
of the latter on the feasible solution of (P). However, despite these ap-
parent differences, it turns out that all the duality results that can be
established for (P)-(DI) are also valid for (P)-(DI). Therefore, in the
sequel we shall consider only the pair (P)-(DI).

For the sake of simplicity of notation, we shall henceforth let o =
(@ ...,a), B=B....08),y=0O...,7), § = (6%,...,6"), ¢ =
(¢, ...,¢%), and = (n%,...,n%).

The next two theorems show that (DI) is a dual problem for (P).
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THEOREM 4.1. (Weak Duality) Let (Z,4) and (z,u, \, pt, v, w, o, 3,7,
d,¢,n) be arbitrary feasible solutions of (P) and (DI), respecmve]y Then

P(Z,8) > p.

Proof. Keeping in mind that A > 0, x4 > 0, and w(t) > 0 for each
t € [a,b], we have

ZA / (HE B + 1K@ + 1L lle) — m]oi(@ a,1)

T b
— | My () iy — IN: () Blngiy] } it = Ai/ {fi(z,u,t)
i=1 a

+a/ ()T Ki(t)z + B ()" Lt — ngi(z, u,t) = 7' () Mi(t)z
— 8 ()T Ni(tyu] } dt

>3 A / (V1 fi(z,u, )T (E — ) + Vafi(z, u,t)T (@ — )
i=1 a
— p[Vigi(z, u, )T (Z — 2) + Vags(z,u, )" (@ — u)] + | Ki(t)Z|x()
+ I L@ tllegy + Ul Mi(O)Z|lmey + IN:(®)llng) — o ()T Ki(t)z
— BT Li(tyu — py ()T Mi(t)x — o (£)" Ni(t)u] } dt

(by the convexity of fi(.,.,t) and —g;(.,.,t),% € 1)

b T
- [{ M=K - i 0 M) - 2
a i=1
+ (=B La(tyu — b ()T V(D) (@~ w) + | Ke()llsy + | Le()allgy
UM OB gy + 1N (Bllagy — o (BT KO - B Lu(t)u
— 1 (0 Mi(0) — () Nyl — ()T A()

+ 2 wi(OVahy(au, ) + T OTR W] + Du(t) } (@ - o)

~{v®7 B +ij )[Vahs(w,u,t)T +07(6)7Q5(8)]} } dt

(by (19) and (20))

b r
> / {;Az-[—um(tﬁuk@lla%t)llz(i) — M) i |7 O e
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= I La(®alleey 18 )iy — sl NeO)allniy 16° )50y + 1K ()Tl k)
+ 1 La(®)alloqy + pll Mi(E) 2@y + pll Ni(t)allns)]
+o(t)T[DZ — Dz — A(t)(F — ) — B(t)(7 — u))

= 2w ONP Ol I Ol + 1Qs @)allg) Im’ )115)

j=1
+}:w OO Ptz + 77 (17Q;(t) +Zw, (B[R (z,u, t)
=1
~ hj(ac, a, t)]} dt

(by Lemma 3.2, integration by parts, and convexity
of hj(., i), 7 E §)

b
> / {07 1Dz — A()2 - B(t)] — v()7[Dx - A(t)x - B(t)u)

+ij Bhs(z,u,t) + T OTPj () + 07 (1) TQ;(t)u]

- Y Ol )+ 1B Ol + 105 Ol
7=1
(by (22) and (23))

> / b{ —u(t)T[Dz — A(t)z — B(t)y]

i Z wj(t)lhy (@, u, ) + ¢ (0 Py(t)o + v (67 Qs (¢)u]  dt

(by the primal feasibility of (%, @)).
In view of (21) the above inequality reduces to
r b
Z;/\i/a {£i(2,0,8) + | K@)l + 1 Li(O)allegy — pg:(F, 8, 1)
— I Mi()Z sy — I1N:() o)) } dt > 0.

Now using Lemma 3.3 and the above inequality, we see that
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Ja S alfil® 3,1) + [ Kk + I1Li(®) o) at

e o h(@, 8 8) — MOy — [N @)l
L LT NG+ KO + L)
B f > im1 Ailgi(Z, 4, 1) = | Mi(8)Z sy — I Ni(8) @l )] di
> .

O

THEOREM 4.2. (Strong Duality) Let (z*,u*) be an optimal solution
of (P). Then there exist \* € A, p* € Ry, v* € PWS"a,b], w
PWS$[a,b], a* € PWSk[a,b], B € PWS%[a,b],y** € PWS™[a,b],
§* € PWS™[a,b],i € r, (Y € PWSPi[a,b], n*) ¢ PWS%[a,b], j € s,
such that z* = (z*,u*, \*, p*,v*, w*, a*, §*,v*, 6%, (*,n*) is an optimal
solution of (DI) and p(z*,u*) = p*.

Proof. By Theorem 3.1, there exist z*, u*, A*, u*(= ¢(z*, u*)), v*, w*,
a”, 3%, v*, 6%, (*,n*, as specified above, such that z* is a feasible solution
of (DI). Since p(z*,u*) = u*, optimality of z* for (DI) follows from
Theorem 4.1. O

We also have the following converse duality result for (P)-(DI).

THEOREM 4.3. (Strict Converse Duality) Let (z*,v*) and (Z,, X, fi,
5,%,&8,73,9,C, 7) be optimal solutions of (P) and (DI), respectively,
and assume that f;(.,.,t) or —g;(.,.,t) is strictly convex throughout [a, b|
for at least one index i € r with the corresponding component A; of A
positive, or h;(.,.,t) is strictly convex throughout [a,b] for at least one
J € s with the corresponding component w;(t) of w(t) positive on [a, b].
Then (Z(t),a(t)) = (z*(¢),u*(t)) for each t € [a,b], that is, (Z,4) is an
optimal solution of (P), and p(z*,u*) = fi.

Proof. Suppose, on the contrary, that (Z(¢),a(t)) # (z*(t),u*(t))
on a subset of [a,b] with positive length. By Theorem 4.2, there ex-
ist \*, u*, v*, w*, o, %+, 8%, ", n*, as specified in Theorem 4.2, such
that (a*,u*, A*, p*, v*, w*, o*, *,~*, 6% ¢*, %) is an optimal solution of
(DI) and @(z*,u*) = p*. Now proceeding as in the proof of Theorem
4.1 (with (z,a) replaced by (z*,u*) and (z,u, \,v,w,,8,7,6,(,n) by
(z,a, S\,g,a,w,a,f},a,é,i,ﬁ), we arrive at the strict inequality

L2y Nlfu(m™ wr, 8) + 1K)z gy + I1Li (8)u* || o] dt
JES0_s Nlgi(a®, ur, 6) = M)z gy — I1Ni (80 lnge)] di
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Using this inequality and Lemma 3.3, we see, as in the proof of Theorem
4.1, that ¢(z*,u*) > [i, which contradicts the fact that p(z*,u*) = u* =
. Therefore we must have (Z(¢), 4(t)) = (z*(¢), u*(t)) for all ¢ € [a, b]
and p(z*,u ) iL. O

5. Duality model I

In this section and the next, we formulate and discuss a number of
parameter-free duality models for (P). The forms and features of these
duality models are based on Theorems 3.4 and 3.5. We begin with the
following problem :

Jo Tioy Nlfi@u,t) + | KBl + I1Ls(t)ullecs)) dt
J2 T Xilgi(@, ust) — I Mi ()2 lmgsy — [IN: (B)ullno] dt

(DII) Maximize

subject to

(27) z(a) =0, z(b) =0,

(28) W(x,u, ) i AilVafi(z,u,t) + Ki(t) el ()]

i=1

— &(z,u,\) Y_ XilVigi(z, v, t) — My(5)T' ()] + A() (t)

i=1

+ > wi(OVih(z,u,t) + B()7¢ ()] + Du(t) = 0, ¢ € [a,b],
j=1

(29) U(z,u, X)) M[Vafi(z,u,t)+ Li(t) B (1))

=1

00,2 S Ml ) — N0 )] + B (2

=1

+ 3 wi®)[Vahi(z,u,t) + Q; (1) ()] = 0,

J=1

(30) v(t)T[-Dz — A(t)x + B(t)ul + > _ w;(t)[hs(z, u,t)
Jj=1
+ 1P () llp) + Q5 (Bullgp] = 0, ¢ € [a,],
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B ' ®lie <1, 18O < L,
1Y )y <1 18 @l <1, t € laybl,

(32) IO <L POl <1, telab], jes,

(33) ‘()T Ki(t)z = [|Ki(D)zllkey, B ()T La(t)u = | La(t)ullg),
Y () Mi(t)z = | Mi($)zllm@y, 8 (8)T Ne(t)u = || Ne(t)ullnga),
te€lab], ter,

(34)
GO Pt = | Pi()zllygy, 707 Qi)u = |QiM)ullyy), t € [a,b],
Jj € s.

(35) A€ A, ve PWS"a,bl, we PWS%[a,b], o' € PWS*a,b],
Bt € PWS%[a,b],v* € PWS™i[a,b], §' € PWS™]a,b],
icr; ¢J € PWSPila,b), 7’ € PWS%[a,b], j €s,

where ® and ¥ are defined in Theorem 3.4;

Ja Sty Millfi(m,w0) + | Ki(©)allic) + | Li()ulle)] dt
Ju Tici Milgi(@,w,8) = IMi@)2llmey = | Ni(®ullno) dt

subject to (27), (30)-(35), and

(DII) Maximize

{\Il(x, u, \) XT: Xi[Vifi(z,u, )T + ol ()T K;i(t)]
=1

- (I)(.'L‘, u, ’\) i )‘i[vlgi(m7 u, t)T - ’yi(t)TMi(t)] + U(t)TA(t)
i=1

+ > wi®)Vihy(@,u, )T + O P(8)] + Do)} (7 — ) 2 0
j=1
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for all t € [a,b] and T € C™[a,b] such that (Z,u) € F for some u €
PWS™|a, b],

{\Il(:v, u, A) Y N[ Vafi(z,u,t)" + BT Li(t)

=1

— 00,2 S MlVagi )T — SOTN()] + () Bt

=1
+Zw] )[Vahy(z, u, t)T +777(t)TQj(t)]}(a—u)20

for all t € [a,b] and @ € PWS™[a,b] such that (z,a) € F for some
x € C™a,b|.

The remarks made earlier about the relationships between (DI) and
(DI) are, of course, also applicable to (DII) and (DII).

Throughout this section and the next, it will be assumed that ®(z, u,
A) > 0 and ¥(z,u,A) > 0 for all z,u, and A such that (z,u, \,v,w, a, 3,
v, 6,(,n) is a feasible solution of the dual problem under consideration.

The next two theorems show that (DII) is a dual problem for (P).

THEOREM 5.1. (Weak Duality) Let (%,4) and z = (z,u, A\, v, w, &, 3,
v,0,(,n) be arbitrary feasible solutions of (P) and (DII), respectively.
Then ¢(Z,a) > v(z), where 1 is the objective function of (DII).

Proof. Keeping in mind that A > 0, ®(z,u,A) > 0, ¥(z,u, ) > 0,
and w(t) > 0 for all t € [a, b], we have

b T
|3 Mt u,t) = MOl

@ =1
- INe@ulaglae [ ZA (e, 5,0) + 1Kl
+ ||Li(t)ﬁ||e(z‘)]dt—/ Z/\i[fi(xauvt) + 1K)z |k

Lt ullgo) dt / ZA 6i(E, 8, ) — | M)l

— IN:@) @l i) di

b T
¥, N{ [ S M@ 8.0 + KOl + | e al] de
¢ i=1
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-f ZA (e, u, )+ KOl + 1Lt dt
- <I>(a:,u, }‘){/ Z’\i[gi(irﬁ7t> - “Mz(t)i“m(z) - “Nz(t)alln(z)] dt

/ Z/\ g” z,u t) “MZ( )wnm(t ”N( )“‘“n(z ]dt}

@ =1
Z\I/(QE, u, }‘) / Z )\é[vlfi(myuat)T(:i - ZC) + V?fi($7u7 t)T(ﬂ - ’U/)
@ =1
+ K (D) Z k) + N Li(B)alley — 1Ok — 1 Li()ulle) dt
b r
- ®(z,u, )\)/ Z Ai[Vigi(z,u, t)T (% — 2)
a i

+ Vagi(@, u, )" (@ = w) = |Mi ()@ mgsy — | Ni(8)@lng
+ ([ M)y + [ Ve(t)uellng)] dt
(by the convexity of f;(.,.,t) and —g;(.,.,t), i €)

b r
_ / (0,0, 0) 3o M-F T Li(t)(@ ~ ) ~ () K1) (7 - 2)
a i=1
+ 1K (O Z k) + 1 L@ allery — N KOl @y — 1 Li(Eulleg]

= Lo AW+ 3wy T sl + OB 0]

=1

+ Dv(t)T}(:“c —z) + &z, u, \) zr:/\i[—-(Si(t)TNi(t)(ﬁ ~ )
=1
=Y Mi(O))(Z — ) + |\ Mi(O)E) iy + N ()T gy — I M (8)Z i)

— [|N; (¢t ’U,”n(z)] { t)TB (t) +Zw3 v2h (z,u t)
+ 7 ()7Q;(t >]}<u —u)}dt (by (28) and (29))
b
> / {w(e.u) Z* N LaO@ e I8 Ol + B Liltyu

~ 1K ()& [l Ha ( Wi + < OT K@)z + | KO g
+ILa(®) )] — MK (Ol — N Li(ullpe] — v(E)TAE)(E - 2)
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= > wi()[Vihs(e,u, )7 (@ — ) + 1P (1)l 17 (D55
j=1
— PO Rtz + ()T D(z — )

+@(2,u,0) Y M= [N (D) alla 16 ()5 + 6° )T Ni(t)u
i=1

= 1Mi ()2 17 ) ley + Y O Mi(t)z + || Mi(£)E Iy
+ [1Ni () allngiy — 1Mi(O)2lmsy = 1 N: (@) ullng)] — o) B(e)(@ - )
= > wi(®)[Vahy(e,u, 1) (@ — u) + Q5 () allyi) Im’ )5
j=1
— 1 (67 Q;(t)ul | at
(by Lemma 3.2 and integration by parts)

b
> / {v(t)T[Da‘: — AT - B(t)d] — v(t)T[Dz — A(t)z — B(t)u]

- Z )\i[Vlhj(fE,u, t)T(j - l‘) + th’j(x?u’ t)T(a - U’) + “PJ(t)i‘”p(J)
=1

+1Q; Wl — O Pt - nj(t)TQj(t)U]} dt (by (31)-(34))
Z/ab{v(t)T[—Dx—l-A( t)x + B(t +Zw3 i(z,u,t)
TR B+ 07 Q (0
=S w0y (5,5, 8) + B3 03l + Qs Jallggs) } dt
j=1

(by the primal feasibility of (Z,u) and convexity of h;(.,.,t),j € s)
> 0 (by the primal feasibility of (Z,@), (30), and (33)).

Now using Lemma 3.3 and the above inequality, we see that

o o(z,a,pu) _ O(Z,4,A) _ Olz,u,N)
D S TR T R Tramp VIS

a

THEOREM 5.2. (Strong Duality) Let (z*,u*) be an optimal solution of
(P). Then there exist \* € A,v* € PWS™a,b],w* € PWS%[a,b],a™ €
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PWS*i[a,b], 3* € PWS%[a,b],v** € PWS™a,b],6* € PWS"][a,b],
i € 1, € PWSPi[a,b],n* € PWS%[a,b],j € s, such that z* =
(z*,u*, X*,v*, w*, o*, B*,v*, 6%, ¢*, n*) is an optimal solution of (DII) and
p(z*, u*) = P(2").

Proof. By Theorem 3.4, there exist A*, v*, w*, o*, 5*,v*, 8%, (*,n*, as
specified above, such that z* is a feasible solution of (DII). Since ¢(z*, u*)
= O(z*,u*, \*) /¥ (z*, u*, A*) = ¥(2*), optimality of z* for (DII) follows
from Theorem 5.1. O

THEOREM 5.3. (Strict Converse Duality) Let (z*,v*) and z = (Z, 4,
A, 0,1, &, B, 7,8, C,7) be optimal solutions of (P) and (DII), respectively,
and assume that fi(.,.,t) or —g;(., ., t) is strictly convex throughout [a, }]
for at least one index i € r with the corresponding component \; of A
positive, or h;(.,.,t) Is strictly convex throughout [a,b] for at least one
j € s with the corresponding component w;(t) of w(t) positive on [a, b].
Then (Z(t),4(t)) = (x*(t),u*(t)) for each t € [a,b], that is, (Z,%) is an
optimal solution of (P), and o{z*,u*) = ¢¥(Z2).

Proof. Suppose, on the contrary, that (£(¢),4(t)) # (z*(¢),u*(t)) on
a subset of [a,b] with positive length. By Theorem 5.2, there exist
AR v wr o By, 8%, (%, n*, as specified in Theorem 5.2, such that
2* = (¥, u* N uN wr ok, 8% v*, 6%, ¢*,n*) is an optimal solution of
(DIT) and (z*,u*) = ¢(2*). Now proceeding as in the proof of Theo-
rem 5.1 (with (Z, @) replaced by (z*,u*) and z by %), we arrive at the

strict inequality
L JEARTAPY! N ®(%, 1, \)
U(z*, ur, X)) U(Z,a,N)

Using this inequality and Lemma 3.3, we see, as in the proof of
Theorem 3.2, that ¢(z*,u*) > ¢(£), which contradicts the fact that
e(z*,u*) = P(2*) = ¥(Z). Therefore, we must have (Z(t),4(t)) =
(x*(t),u*(t)) for all t € [a,b], and p(z*,u*) = ¥(2). O

The formulation of the dual problems (DII) and (DII) was based
directly on the form of the optimality conditions of Theorem 3.4. How-
ever, a careful examination of the proofs of Theorems 5.1 and 5.2 will
readily reveal the fact that the constraints (33) and (34) are essentially
redundant in the sense that their deletion will not invalidate the duality
results. More specifically, it can be shown that the following streamlined
versions of (DII) and (DII) obtained by dropping (33) and (34), and
then modifying the objective functions and the remaining constraints of
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(DII) and (DII) accordingly, are also bona fide dual problems for (P):
b 1L T g T
Jo Xic dilgi(m, u, t) = ¥ ()T Mi(t)z — 6%(¢)T Ni(t)u] dt

subject to (27), (35), and

> 2f{T(@,u, A7, ) [Vafilz, u,t) + Ki(t) o' (t)]

=1

- H(.’L‘, U, A, @ ﬂ)[VLgi(l', U, t) - Mi(t)T’Yi(t)]} + A(t)Tv(t)
+ 3w (®)[Vahj(z,u,t) + Py ()T (t)]

j=1
+ Du(t) =0, tE€ [a,b],

Z )\,L{F(CE,’U,, )\777 (S)[Vsz(l', U,t) + L'L(t)Tﬂl(t)]
=1
T, 8)[Tagil, w,8) — NSO} + BH o(t)

+ZwJ [Vah;(z,u,t) + Qi) T/ (#)] =0, t € [a,b],

(38) v(t)'[-Dz— A u]—{—Zw]t) (z,u,1)
+¢ (@) g():v+n]()TQJ()ulzo,tE[a,bL

(39) llo'®liw <L 18 @ <1,
IV @)l <1 18 ®lhe <1, telal], ier,

40)  IFDI <L IO, <1, telad, jes,

where
I(z,u, A\ a,p) = / Z)\ [filz,u, t) + ()T K (t)z + B (t)T Li(t)u] dt
and

I(z,u, A, v,9) / Z)\ [9:(x, u, ) — ¥V ()T M;(t)z — 6°(t)T Ny(t)u] dt;
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L Al ut) + o ()T Ki(@a + B (6)T Li(t)u) de
L2 Nilgi(m, u,t) — vi()T Ma(tyx — 6 ()T Ni(t)u] dt

(DITA) Maximize

subject to (27), (35), (38)-(40), and

{ Z /\z{F(x, u, )\a Y, 6) [vlfz(xa u, t)T + ai(t)TKi(t)]
=1
— (z,u, A, &, B)[V1gi(z, u, )T — ¥ ()T Mi(1)]} + v(t) T A(t)

+Zw3 )[V1hy(z,u,t)T +Cj(t)TPj(t)]+Dv(t)T}(:E—x)20

for all t € [a,b] and Z € C"™[a,b] such that (Z,u) € F for some u €
PWS™|a, ),

{ ST NAT (@, w, Ay, ) [Vafile,u, )T + (0T Li(?)

i=1
— O(z, u, \, @, B)[Vags(z,u,t)T — 8T N} + v(t)T B(2)

+Zw, [Vahj(z,u, t)T + nj(t)TQj(t)]}(a—u)ZO

for all ¢ € [a,b] and & € PWS™[a,b] such that (z,a) € F for some
z € C™a,b).

_The remarks made earlier about the relationships between (DI) and
(DI) are, of course, also applicable to (DIIA) and (DIIA).

We next show that (DITA) and (DIIA) are indeed dual problems for
(P).

Throughout this section and the next, it will be assumed that II(z, u,
Aa,B) > 0 and I'(z,u, A, vy,9) > 0 for all z,u, A, o, 3,7, and 6, such
that (z,u, A\, v, w, o, 8,7, 9,(,n) is a feasible solution of the dual problem
under consideration.

THEOREM 5.4. (Weak Duality) Let (Z,u) and z = (z,u, A\, v, w, o, 3,
v, 6,¢, n) be arbitrary feasible solutions of (P) and (DIIA), respectively.
Then ¢(Z, %) > w(z), where w is the objective function of (DIIA).
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Proof. Keeping in mind that A > 0, II(z,u, A,a, 8) > 0, I'(z,u, A, 7,
§) > 0, and w(t) > 0 for all ¢ € [a,b], we have

[(z,u, A, v, 6)®(Z, 4, ) — II(z, u, \, @, B)¥(Z,°, A)
/a Z Nlgi(,u, 1) — 4 (6T M)z
(O Ny(t)u] dt / ZA (@, ,0) + | K2

+ | Li(t) ]l o) dt—/ Z)\ [fi(z, u,t) + o' ()T K;(t)z

+ BY(t) dt/ Z,\ [9:(Z, G, t

— | M) 2| iy — [ Vi )u”n )| dt
D(z,8,A,7,6 /ZA { 1@, 3,0) + 1K)l
+ILB)alla) — [ w 1) + o (0T Ki(t)z + () Li(t)u) dt }

b T
_H(z’u7)‘7a7/8)/ Z)‘l{g’b(i:avt)
& =1
— IM:(£)Z|m) = 1 N:(£)8llnga)]
— [gi(o,u,1) — 7 (O Mi(t)e — 48T Ni(t)u] dt |

b T
> [*3 " {le, 007,091 iy 0, (@ - )

i=1
+ Vafi(z,u, )T (@ — u) + | Ki(O)F |rqe) + 1Li(8)all o) — & (1) Kilt)e
- B )TL;(t)u] — (z,u, \, a, B)[V1gi(z,u, )T (Z — )
+ Vagi(z, u, 1) (@ — ) = | My ()& llme) — [ Ni(O)Tllng)
+9 (0 M(t)e + 8 (£ Nty } at
(by the convexity of f;(.,.,t) and —g;(.,.,t), i € 1)

= /b {F(.’L‘, u, /\7 7 5) i )\i[—ai(t)TKi(t)j - ﬂi(t)TLi(t)a
e i=1
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+ MK sgey + ILall] — {v®TA®)

3 Oy, w, )" + O OTPO]+ Do) } @~ 2)
7=1

— (z,u, A\, a, B) Z)\ YT M ()E + 8 (0T Ni(t)T — | M (8)E )
— | Ni(O)ullns)]

—{o@TBE) + 3 wi(t)[Tahy e, u, (T + 0/ (T Q;(0) ) (@ - u)}
j=1
(by (36) and (37))

b
> / {muw(s)z,\ ~ KBkl (Dl

=1
— L)l e 18* Ol + 1K Z N rgey + 1 L)l
+ [Do()T + v®)TAB)(E — ) — v(@)T B(t) (3@ ~ u)
~ 25: wi (1) [V1ihi(z, u,t)T (& — z) + Vahi(z,u, )T (& — u)

j=1
P OZ I Ol — G OT POz + 1RO allg I Dl
~ P ()T Q;(t)u] ~ T(w,u, A, 0, 8) Y Ml Mi(®)F iy 1Y () 3y
=1
+ | Ns ()8l (i 16" (D) sy = M2 i) — ”Ni(t)ﬁ”n(i)]} dt
(by Lemma 3.2)

> / ’ {v(t)T[D:E — A(t)z — B(t)a] — v(t)T[-Dz + A(t)z + B(t)u]

=3 " w;®)[Vihy(z, u, )T (& — ) + Vah;(z, 4, 1) (@ — )
3=1

FIP Ol + 1 Dl] — GO i) — 7 (07 Q2] d
(by (39), (40), and integration by parts)

2/: {v(t)T[ADa: + A(t)z + B(t)ul
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+ 3wk, u,t) + GOT Pz + 0l ()T Q,(t)u]

J=1

S
= 3wl (E,3,8) + 1P ()l + 1Qs(Dlgg)] | at
j=1
(by the primal feasibility of (Z, @)and convexity of h;(.,.,t),j € s)
> 0 (by the primal feasibility of (Z, @) and (38)).
Now from Lemma 3.3 and the above inequality we see that
— Q(%”Q?ﬂ/’l’) Z Q(?71—‘_L7 A) 2 H(m,u’ A’a7ﬁ) :w(z).
pwed U(Z,a,pu) — Y(Z,u,A) — I(z,u,A,7,9)
O

THEOREM 5.5. (Strong Duality) Let (z*,u*) be an optimal solution of
(P). Then there exist \* € A,v* € PWS™[a,b],w* € PWS%[a,b],a™ €
PW S¥[a,b), 5 € PWSka,bl,v* € PWS™i[a,b],6* € PWS"i[a,b],
i €1, € PWSPi[a,b],n* € PWS%|a,b], j € s, such that

Z* = ("'E*7 u*’ A*7 ,U*, w*’ a*’ /8*7 7*7 5*’ C*, 77*)
is an optimal solution of (DIIA) and p(z*,u*) = w(z*).

Proof. By Theorem 3.4, there exist A*, v*, w*, o*, 6%,~*,6%,(*, 0", as
specified above, such that z* is a feasible solution of (DIIA) and ¢(2*, u*)
= ®(z*,u*, A*) /¥ (z*, u*, \*) = w(z*), because

(T Ki(t)z" = | Ki(t)e k@), ()T Li(t)u*
=1 Li(8)u* ey, ¥ ()T Ma(t)a* = [|Mi(8) 2" lmga),

and §* ()T N;(t)u* = | Ni(t)u*|ln() for all t € [a,b] and all i € 7. Now
optimality of z* for (DIIA) follows from Theorem 5.4. O

THEOREM 5.6. (Strict Converse Duality) Let (z*,u*) and Z = (Z, 4,
;\,ﬁ,zb,d,ﬁ,’y,g, ¢, 7), be optimal solutions of (P) and (DIIA), respec-
tively, and assume that f;(.,.,t) or —g;(.,.,t) is strictly convex through-
out [a,b] for at least one index 1 € r with the corresponding component
X\; of \ positive, or h;(.,.,t) is strictly convex throughout [a,b| for at
least one j € s with the corresponding component 0;(t) of w(t) positive
on [a,b]. Then (Z(t),u(t)) = (z*(t),u*(t)) for each t € [a,b], that is,
(Z,a) is an optimal solution of (P), and ¢(z*,u*) = w(Z).

Proof. Suppose, on the contrary, that (Z(t), a(t)) # (z*(t), u*(t)) on
a subset of [a,b] with positive length. By Theorem 5.5, there exist
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A v wr, o, B, 9%, 6%, ¢*,n*, as specified in Theorem 5.5, such that
24 = (z7, Ut N vt wr ok, 8%, 9%, 6%, ¢*, %) is an optimal solution of
(DITA) and ¢(z*,u*) = w(z*). Now proceeding as in the proof of The-
orem 5.4 (with (Z,a) replaced by (z*,u*) and z by %), we arrive at the
strict inequality

®(z*, u*, N) . ®(Z, i, A

Ulz* us, N W(E,4,N)

Using this inequality and Lemma 3.3, we see, as in the proof of
Theorem 5.4, that o(z*,u*) > w(Z), which contradicts the fact that
(", u*) = w(z*) = w(%). Therefore, we must have (Z(t),a(t)) =
(z*(t),w*(t)) for all ¢ € [a,b], and @(z*,u*) = w(Z). O

6. Duality model ITI
We shall continue our discussion of duality for (P) in this section by
considering the following variants of (DII) and (DII):

Q(xz,u, X) + Qz, u,v,w)
U(z,u,\)

(DIII) Maximize

subject to (27), (30)-(35), and

(1) Wz, u, {3 MVafie,w 1) + K)o (0] + ABTo(t)

i=1

+ D wi(OVihy(,u 1) + B(H7¢ ()] + Du(t) }
j=1

= [®(z,u, \) + Qz, u, v, w)] Z AilVigi(z, u,t)
i=1

= M)y ()] =0, t€ [a,b],

(42) U, u, N{ D A{Vafilz, ut) + L) B @) + B o(t)

i=1

+ E w;(t)[Vahj(z,u,t) + Qj(t)Tﬂj(t)]}

J=1
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— [®(z,u, \) + Q(z, u, v, w)] Z Ai[Vagi(z,u,t)
i=1

— N;)T6(t)] =0, te€][a,bl,

where ® and ¥ are as defined in Theorem 3.4 and

b
Qz,u,v,w) = / {v(t)T[—Dx — A(t)z + B(t)u]

+ > wi(®) (e, u,t) + | P (6] o

7=1
+11Qs(Eullygp]  dt

Oz, u, ) + Qz, u,v,w)

(DIII) Maximize Tz, u )

subject to (27), (30)-(35), and
{\I/(q:, u, ,\){ Z X[V fiz,u, )T + ()T K ()] + v()T A()

£ s ()[Vahs (w7 + O 0T B 0] + Do (1) }

Jj=1

— [®(z, u, A) + Q(z, u, v, w)] Z Ai[Vagi(z,u, t)T

—7 (07 Mi(t)]} (&~ ) 2 0

for all t € [a,b] and Z € C"[a,b] such that (Z,u) € F for some u €
PW S™[a,b],

{#@u, V{3 MVafile, u )T + B OTL®)] +o(OTB®)
i=1

+ 3w OVohsew )+ (17 Qs (0]}

7=1
— [®(z,u, A) + Qz, u, v, w)] Z Xi[Vagi(z,u, t)T
=1

- 6i(t)TNi(t)]}(a —u) >0
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for all t € [a,b] and @ € PWS™|a,b] such that (z,a) € F for some
z € C™[a, b].

The remarks made earlier about the relationships between (DI) and
(DI) are, of course, also applicable to (DIII) and (DIII).

We next state and prove weak, strong, and strict converse duality
theorems for (P) and (DIII).

THEOREM 6.1. (Weak Duality) Let (Z,4) and z = (z,u, A, v, w, o, G,
v, 6,¢,n) be arbitrary feasible solutions of (P) and (DIII), respectively.
Then ¢(Z,u) > &(z), where  is the objective function of (DIII).

Proof. Keeping in mind that A > 0, ®(z,u,A) > 0, ¥(z,u, A} > 0,
and w(t) > 0 for all ¢ € [a, b], we have

Uz, u, N O(E, @, ) — [®(z,u, \) + Az, u, v, w)|¥(F, 3, \)
W(a,u,\ / ZA i@, 5, 0) + 1 Ki)all + 1L Oleo)

~ fwunt) - D@l — s Oullo) e

~a(eu | bizr;ugm,a,t) Mgy ~ IV

— gi(z, u,t) + | Mi(8)x || ey + IN:(Dullng)] dt — ¥(Z, 3, \)Q(z, u, v, w)

>U(z, u, \) / S ML 0T — ) + Vafi(ew ) (@ — )
UK Ol )y — Vel (0l o)
— &(z,u,\) / Z)\ (Vigs (2,1, )T ( — 7) + Vagi(@, u, )T (@ — )

= [ Mi(£)Z | ms) HNz( Villngy + 1 Mi(t)x|lme) + 1V (@) ullne)] dt
— U(Z, @, )z, u, v, w)
(by the convexity of f;(.,.,t) and —g;(.,.,t), 1 € 1)
b r
_ / { = 9@u NS MO KD E - 2)+ 66T L)@~ v)
a i=1

— K@) kgay — I Ls()l ey + 1 Ki(t) k) + | Lilt)ullem)

+ 3 wi ()] [Vihi (2w, + T OTP )7 — 2) + [Vahy(z,u, )T
j=1
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+ 77 (17 Q;()](@ —w) | + [T A) + Du(t)](@ - 2)
+out)TB()(a - u)}

+ ®(z,u,\) Z Ai[=7 ()T M;(£)(Z — z) — 6 (t) T Ny () (@ — )
— IM; @)zl — IN:(@)ulln@y + IMi(O)Zlm@ + 1 Ni(®)allne)
+ Q(i, u,v, w) Z )\i{vlgi(ma unt)T(E - .Z‘) + [v29i(xa u, t)T(,a - U)]

Z(t)TM ()& - 2) — 8 (O Ni(t) (@ —w)] } } at
, ANz, u,v,w) (by (41) and (42))

(&,
/ {qu{ZA KO o ()l + o ()T Ki(t)z

+ILi ()l 18 () l3gsy + B ()T La(t)u + | Ki(8) E Ik
+ | La(t)alleqsy — 1K () zllkge) — 1 L@ ullewm)
= w;(t)[Vih;(z,u, 1) (Z — 2)
j=1
+ 1P (O F ) 17 D355y — O Py(8) + Vahy(z, u, )T (@~ w)
H11Q; W) allgp I’ Ol — 7 ()T Q;(t)w]
+u(t)T[DF — A(t)Z — B(t)a] +v(t)T[-Dz + At)z + B(t)u]}

O(x,u,A) ZA ~IMi (O Ny 17 () 15y + 7 () Mit)

— | N; (t)u]|n(z)||5z( Wi + 6" @ Ni(®)u — [|Mi () lmg)
— IN:(@)ullng) + IMi()Z | me) + |1 N: () Blln)

+ Qz, u,v,w) Z Xi[—gi(z,u,t) + g:(Z, 4, t)
i=1

— M) (i) 1V () ey + 7 ()T Mi(t)
— [N ()@l 16 ) 55y + 6" Ni(t)u

— 6i(@,8,) + IM(8)F iy + [N (©) o)
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(by Lemma 3.2, integration by parts,
convexity of —g;(.,.,t),7 € r, and definition of ¥(Z, G, \))

> / b {\I/(m, u, A){U(t)T[—D:c + A(t)x + B(t)u]
+ Y wi(O)lhy(z, ut) — hi(7,3,t) — | Bi(8)E]l0
i=1

= 1@ (Bl + O Py(ta+ i (1) Q;t)ul}

T
— Qz, u,v,w) Z Ailgi(z,u, t) — v ()T My (t)x — (Si(t)TNi(t)u]} dt
i=1
(by (31)-(33), primal feasibility of (Z,a),
and convexity of h;(.,.,t),j € s)
> 0 (by the primal feasibility of (z,a), (33), (34),
and definitions of ¥(x,u, A} and Q(z,u,v, w)).

From the above inequality we conclude that

O(z,a, ) S O (z,u,\) + Qz, u,v,w)
3 .

(43) Y(Z,u,A) U(x,u, )

Because

by Lemma 3.3, it follows from (43) that

Q(z,u, A) + Qz, u, v, w)
U(z,u,\)

o(Z,u) > = £(2).

O

‘THEOREM 6.2. (Strong Duality) Let (z*,u*) be an optimal solution of
(P). Then there exist \* € A,v* € PWS"[a,b],w* € PW S5 [a,b],a* €
PW Ski{a,b], 8* € PW Sb{a,b],v** € PWS™[a,b),8* € PWS™|a,bl,
i € r,{" € PWSPila,bl,nY € PWS%[a,b],j € s, such that »* =
(z*, u™, X, v, w*, %, 8%, v*, 6%, (%, %) is an optimal solution of (DII1)
and o(a*,u") = {(2*).

Proof. By Theorem 3.4, there exist v°€ PW S"|a, b], w°€ PW S*[a, b],
and A%, o™, 8%, v*, 6%, i € r,(Y,n*, j € s, as specified above, such
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that the following relations hold for all ¢t € [a, b] :

(44)

(49)

(50)

i AW (%, u*, M) [V filz®, ur, 1) + Ko(t) T o™ (1))
i=1
— ®(z*,ut, \)[Vagi(a™, u*, 1) = M)y ()]} + A)T0°(2)

+Zw )[V1h;(z*, u*, t) + Pi(t)T¢¥ ()] + Dvo(t) =0,

ZA*{\D 2, A)[Vafi(a* ut,8) + L(t) T 87(1)]

- @(z*, U, X)[Vagi(a®, u*, 8) = Ny())T§(8)]} + B 0" (1)

+ 3w (B)[Vahy(z*,u", 1) + Qi (1) (1)] = 0,

=1

D wi®hia*,ut 1) + POz o) + 1Qi Bully) = 0,
j=1

P _"I)(CB*,’U,*,A*)
S0($ y,ut) = W’

o ® i < L 18"y < 1,
7 Oy < LIS Oy <1, i€,

7B <1 IO < 1d€s,

()T Ki(t)r” = |Kit)z* ke, BT Lit)u” = [ILi(t)u"llecs),

YT M;(t)* = | M)z lmgiy, 6T Ni()u* = |Ni(®)u* [y,

(51)

1ET,

¢TI Pt = | () |lpgy, 1Y (BT Q0w = 1Qi(t)u"llgyy, 7 € s
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Since ¥(z*,u*,A*) > 0 and (46) holds, (44)-(46) can be rewritten as
follows :

(52) W wt A NIVt w8 + Kl o (1)

+AGT 0T (", N+ Y [wh(0)/ ¥ (e, u, X
j=1
[Vihj(a™,u*,8) + Pi()T ¢ (2)]

+ D°(8) /¥ (z*, A*)]} —[®(z*, u*, N

+Q(x*,u*,v"/‘ll(a:*,u*,)\*),wo/‘ll(x*,u*,)\*))]Z)\f[vlgi(:c*,u*,t)
i=1
— M)y ()] =0, te€la,

(53) W' ut X 3 N[Tafile’u, 1) + LT ()
i=1
+ B(t)T[v° /¥ (z*, u* A*]-i—Z[w ()T (z*, u*, \*)] x
i=1
[Vahs(a®,u”, 1) + Q;() 79 ()] } — [(a*, u", X*)
Qw0 /T, Uk, N, we Tz u, V)] %

r
Z )\:[VQQZ(JI*, U*>t) - Nl(t)Td*z(t)] = 07 te [av b],
i=1

) D [wh()/ (e, ur, A))
j=1
[ (™, u®, 1) + | P (1) x|y + 1Qs(E)u"llg)] =0, t € [a,B].

Now letting v* = v°/¥(z*,u*, A*) and w* = w°/¥(z* u*, \*) in (44)-
(46), we see from (48)-(54) that 2* is a feasible solution of (DIII). But
in view of (47) and (54), ¢(x*,u*) = £(2*) and, therefore, by Theorem
6.1, (z*,u*) is an optimal solution of (DIII). O
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THEOREM 6.3. (Strict Converse Duality) Let (x*,u*) and % = (%, 4,
A, ©,%,a,6,7,8,C,7) be optimal solutions of (P) and (DIII), respec-
tively, and assume that f;(.,.,t) or ~g;(.,.,t) is strictly convex through-
out [a,b] for at least one index i € r with the corresponding compo-
nent A; of A\ (and ®(Z,4,))) positive, or h;(.,.,t) is strictly convex
throughout [a,b] for at least one j € s with the corresponding com-
ponent w;(t) of w(t) positive on [a,b]. Then (Z(t),u(t)) = (z*(t), u*(t))
for each t € [a,b], that is, (Z,4) is an optimal solution of (P), and
ez, u*) = £(2).

Proof. The proof is similar to that of Theorem 5.3. O

We close this section with a brief discussion of the reduced versions of
(DIII) and (DIII) obtained by omitting (33) and (34) and modifying the
objective functions and the remaining constraints of (DIII) and (DIII)
accordingly. These problems assume the following forms :

H(x7 u’ >\7 a’ ﬂ) + A((E, u? U? w? C’ 7])
F(m7’u” A7’)/7 6)

(DIITA) Maximize

subject to

(55) z(a) =0, z(b) =0,

(56) T(@u,A7,8){ Yo MIVifilmut) + K(®)To O] A0 (!

i=1

+ 3 wi(t)[Vahs (@, u, 1) + BT ()] + Du(t) |
j=1
— (z,u, A\, o, B) + Az, u, v, w,{,n)] x

T

> AilVagi(z,u, t) — Mi()Ty4 ()] = 0, t € [a,b],

=1

(57) T(z,u270{ 3 AlVafi(z, u1) + L) 6 (2)

i=1

+ BOTo(t) + Y wi () Vahy(z, u,t) + Q6 (1)) |

=1
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- [H(x’ u’ )\’ a7 6) + A(I, u7 U7 w7 C’ 77)] X

S MVagi(erwt) - NOTS (0] =0, ¢ € [a,B],
i=1

(58) v(t)T[-Dz — A(t)z + B(t)u] +ij )[Rz, u,t)
3=1
+1Pi()zllpy) + 1QiBullgpn] = 0, t € [a,bl,

(59) 'Ol <L I Olin <1 I ®Ole <
I8 5 <1, te[a b, i€,

(60) IO <1 IO <1 telad], jes,

(61) A€ A, ve PWS"a,b], w € PWS3[a,b], o € PWS¥i[a,b],
B € PWS%[a,b],v' € PWS™[a,b], 5 € PWS™[a,b],
ier;¢? € PWSPija,b), P € PWS%[a,b], j € s,

where IT and T" are as defined in the preceding section and
b
8w v, ¢ = [ {o[-Da - A - Bl

+ > wilhi(e,u,6) + I OTFO + 0 (07 Q; (1)l } d;
J=1
O(z, u, A\, @, B) + Az, u,v,w, ¢, 1)

DIITA) Maximi
(DIITA) aximize T, 7 7,0)

subject to (55), (58)-(61), and

{I‘(a:, u, A, 7, 5){ Z N[V fi(z,u, )T + o ()T K (1)) + v(t)TA(2)

+Zw] Vih(z,u, )T + )T By(8)] + Do) }
— Mz, u, A, @, B) + Az, u, v, w, {,n)]

> AilVigile,u )~y (0T Mie) | (2~ ) 2 0
i=1
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for all t € [a,b] and Z € C™[a,b] such that (Z,u) € F for some u €
PWS™[a, b|

{r(@,ux 78] ixi[vzmw,u, O + 80T L(0) + v B

+Zw] )[Vah(a,u,0) -+ (7 Q)]
- [H(x,u, Ao, B) + Az, u, v,w, §,n)] %

T
> XilVagi(z, u, )~ F (TN Ha - w) 2 0
i=1
for all ¢t € [a,b] and & € PWS™[a,b] such that (z,%) € F for some
z € C"a, b].
The remarks made earlier about the relationships between (DI) and
(DI) are, of course, also applicable to (DIIIA) and (DIIIA).
Following the pattern of Theorems 5.4-5.6 and Theorems 6.1-6.3, one
can state and prove similar duality theorems for (P)-(DIIIA) (and (P)-
(DIIIA)).

7. Problems containing square roots of positive semidefinite
quadratic forms

In this section, we briefly discuss an important special case of (P)

obtained by choosing all the norms to be the fy-norm || - ||2. Specifi-
cally, if we let k() = £(i) = m(i) = n(i) = p(j) = q( /) = 2 and define
Ei(t) = Ki(t)TK(t), Fi(t) = Li(t)  Li(t), Gi(t) = Mi(t)TMit), Hi(t) =

Ni(t)Ni(t),i € r, Ri(t) = P;(1)TP;(t) and S;(t) = Q;()7Q;(t),j €
s, then it is easily seen that E;(t), Gi(t),i € r, and R;(t),j €
are n X n symmetric positive semidefinite matrices; F;(t), H (t), 1 er,
and S;(t), j € s, are m x m symmetric positive semidefinite matri-
ces, and, therefore, the functions z(t) — [z(t)TE;()z(t)]Y/2, =(t) —
BTGBz (B)2, i € r, and 2(t)t [t R;()a(t)]2, j € s, are
convex on R™, and the functions u(t) — [u(t)T Fi(t)u(t)]/?, u(t) —
[w(®)T Hy(t)u(t)]Y/?, i € r, and u(t) — [u(t)TS;({t)u(t)]/?, j € s, are
convex on R™. With these choices of the norms and matrices, (P), (P1),
(P2), and (P3) become

. JoAfs(@(), u(t), ) + e T E:@)2@)]/2 + [u(t) TF())u(t)]/?} dt
(P*) Minimize max
1SiSr [2{gi(2(t), ult),t) — [2(B)TGi(8)()] /2 — [u(t)T Hy(t)u(t)]/2} dt

CIJ
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subject to
(62) z(a) =0, z(b) =0,
(63) Dx(t) = A(t)x(t) + B(t)u(t), t € [a,b],

(64)  hy(x(t), ult), t) + [z(t) R, (t)()]/
+[u(®)"S;(t)u®]V? <0, teal], jes,

(65) z € C"[a,b], ue€ PWS™a,b;

P Miniie Je U0 MO0+ BOTE @)/ + ) R@u@) 2t
(eer Mg (a(t), u(®),6) - (0T G1(O2(O]'/2 — [w(t) Hr (ult)] 2} dt’

(P2') Minimize max [ {0,000 + BT BDo(0]/? + ()T R@uo)]'/?) d

(P3) Mimimize [ {0, u0,0+ B0 B e + @) FOUOP) dr

where F* = {(z,u) € C"[a,b] x PWS™[a,b] : (62) — (64) hold} is the
feasible set of (P*).

To see more explicitly the modifications resulting from specializing
the parametric optimality conditions of Section 3, we next combine,
alter, and restate Theorems 3.1 and 3.2 for (P*). We assume that the

constraints of (P*) satisfy Slater’s constraint qualification (see Theorem
2.1).

THEOREM 7.1. A feasible solution (z*,u*) of (P*) is optimal if and
only if there exist \* € A, p* € Ry, v* € PWS"[a,b],w* € PWSS[a,b],
§,¢% € PWS"[a,b], 7, p* € PWS™[a,b], i € r, 0™ € PWS"[a, b,
w* € PWS™[a,b], j € s, such that the following relations hold for all
t€la,b:

D oM{VLfie™ wt ) + Ei()07(t) — w[Vagi(a®,u',8) — Git)E€7 ()]}
i=1

+ AT (8) + D wi(O)[Viky(@®,u*, 1) + R;(t)o™ ()] + Dv*(¢) = 0,
j=1
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D AH{Vafila",ut8) + B(O)r (1) — p*[Vagi(@®,u*, 1) — Hi(t)p™ (D]}

=1

+ B(t)Tv (1) + Y wi(t)[Vah;(a, u”,t) + S (t)w* (£)] =0,
ji=1

iw;(t){hj(x*, u*,t) + [z R;(t)x*)Y? + [w*T S;(t)u*]/?} = 0,
j=1

p T
SN {fila"ut 1) + T B2 T + [T Ry
i=1

a -

— p*{gi(z*, u*,t) — [a:*r‘FGi(t)x"‘]l/2 - [u*THi(t)u*]1/2}} dt = 0,

0T EWET () <1, TOTRET) <1, £9TCEN D <1,
PUOTH(t)pM() <1, i€,

oI (t) Ri(1)o (t) <1, wI(B)T S () <1, jes,

O*i(t)TEi(t)z* — [.Z‘*T(t)Eil'*]l/2, ’/'l'*i(t)TFi(t)’LL* — [u*TF,»(t)u*]l/z,
TG = TG, T Hilt® = wTH (Y2, e,

o) TR (t)z* = [*TR;(t)z*]2, w¥(t)TS;(t)u* = [wTS;(t)u*]/?, jes.

In a similar manner, one can readily specialize and restate Theorems
3.3-3.5, (DI), (DI), Theorems 4.1-4.3, (DII), (DII), (DIIA), (DIIA), The-
orems 5.1-5.6, (DIII), (DIII), (DIITA), (DIIIA), and Theorems 6.1 - 6.3
for (P*), (P*1), (P*2), and (P*3).

Mathematical programming problems containing square roots of qua-
dratic forms have been the subject of numerous investigations. These
problems have arisen in stochastic programming, multifacility location
problems, and portfolio selection problems, among others. Many op-
timality and duality results for several classes of these problems have
appeared in the related literature. A fairly long list of references per-
taining to various aspects of these problems is given in [26] (see also [4,
6, 27, 28]).
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