A SUBFOLIATION OF A CR-FOLIATION ON A LOCALLY CONFORMAL ALMOST KÄHLER MANIFOLD

TAE WAN KIM AND HONG KYUNG PAK

ABSTRACT. The present paper treats with a subfoliation of a CR-foliation $\mathcal F$ on an almost Hermitian manifold M. When M is locally conformal almost Kähler, it has three CR-foliations. We show that a CR-foliation $\mathcal F$ on such manifold M admits a canonical subfoliation $\mathcal D_{\mathcal F}^{\perp}$ defined by its totally real subbundle. Furthermore, we investigate some cohomology classes for $\mathcal D_{\mathcal F}^{\perp}$. Finally, we construct a new one from an old locally conformal almost Kähler (in particular, an almost generalized Hopf) manifold.

1. Introduction

Locally conformal Kähler geometry has been discussed by many mathematicians since Vaisman ([7]). Most of the known examples of locally conformal Kähler manifolds turn out to be generalized Hopf manifolds, that is, locally conformal Kähler manifolds with parallel Lee form ([8]). Classical Hopf manifolds are typical examples of compact generalized Hopf manifolds which are not globally conformal Kähler.

The present paper has two sources. Chen and Piccinni ([2]) studied the canonical foliations of a generalized Hopf manifold and the canonical cohomology determined by a CR-submanifold in a locally conformal Kähler manifold. On the other hand, Kashiwada ([4]) recently introduced a notion of almost generalized Hopf manifolds, which becomes a generalized Hopf manifold when the given almost complex structure is integrable.

Received April 22, 2003.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C20, Secondary 57R30.

Key words and phrases: locally conformal almost Kähler manifold, almost generalized Hopf manifold, CR-foliation, Godbillon-Vey class.

This research was supported by the grant from Korea Research Foundation, Korea 2000, KRF-2000-042-D00007.

The main purpose of the present paper is to extend the results obtained in [2] in the context of almost Hermitian geometry from the viewpoint of foliation. In section 2, we introduce the notion of a CR-foliation on an almost Hermitian manifold. In section 3, we consider a canonical subfoliation $\mathcal{D}_{\mathcal{F}}^{\perp}$ defined by the totally real subbundle for a CR-foliation \mathcal{F} on a locally conformal almost Kähler manifold. Section 4 is discussed with some cohomology classes for $\mathcal{D}_{\mathcal{F}}^{\perp}$. In section 5, we construct a new one from an old locally conformal almost Kähler (in particular, an almost generalized Hopf) manifold.

2. A CR-foliation of an almost Hermitian manifold

Let (M, J, g) be an almost Hermitian manifold of dimension 2n, and Ω be its fundamental form given by $\Omega(X, Y) := g(JX, Y)$. Given a foliation \mathcal{F} on M, there is an orthogonal decomposition

$$TM = F \oplus F^{\perp}$$

with respect to g, where F denotes the subbundle of TM tangent to \mathcal{F} . Correspondingly, the metric g is decomposed into $g = g_F + g_{F^{\perp}}$. Recall that \mathcal{F} is said to be bundle-like if $\overset{\circ}{\nabla}_V g_{F^{\perp}} = 0$ for all $V \in \Gamma(F)$, where $\overset{\circ}{\nabla}$ denotes the Bott connection ([2], [6]).

DEFINITION. \mathcal{F} is a CR-foliation on an almost Hermitian manifold (M, J, g) if its tangent bundle F admits a subbundle D_F such that

- (1) D_F is the maximal complex subbundle of F, i.e., $JD_F \subset D_F$,
- (2) the orthogonal complementary subbundle D_F^{\perp} to D_F is totally real, i.e., $JD_F^{\perp} \subset F^{\perp}$.

From the definition, we find that each leaf \mathcal{L} of a CR-foliation \mathcal{F} is a CR-submanifold of M. The maximal complex subbundle and the totally real subbundle for \mathcal{L} are isomorphic to D_F and D_F^{\perp} respectively.

An almost Hermitian manifold (M, J, g) is said to be locally conformal almost Kähler if for each $p \in M$, there exists a neighborhood U and a function σ on U such that $\tilde{g_U} := e^{-2\sigma}g|_U$ is an almost Kähler metric with respect to J on U. It is well-known ([7]) that a characterization of a locally conformal almost Kähler manifold is the existence of a Lee form α , that is, a 1-form α such that

(2.1)
$$d\alpha = 0, \quad d\Omega = 2\alpha \wedge \Omega.$$

Throughout the paper, the Lee form α is assumed to be nowhere vanishing on M. Then we have natural CR-foliations as follows.

PROPOSITION 2.1. Let M be a locally conformal almost Kähler manifold with nowhere vanishing Lee form α . Then M admits the following CR-foliations

- (1) a flow \mathcal{E}^{\perp} generated the Lee vector field $A := \alpha^{\#}$,
- (2) a codimension 1 foliation \mathcal{E} given by $\alpha = 0$,
- (3) on the leaves of \mathcal{E} a flow \mathcal{D}^{\perp} defined by the totally real subbundle.

Proof. Since α is nowhere vanishing on M, the subbundle E^{\perp} generated by the Lee vector field A defines a flow (1-dimensional foliation) \mathcal{E}^{\perp} . In addition, $d\alpha = 0$ implies that $\alpha = 0$ defines an integrable subbundle E on M, and hence a codimension 1 foliation \mathcal{E} . The leaves of \mathcal{E} are hypersurfaces of M. Its totally real subbundle D^{\perp} satisfies $E^{\perp} = JD^{\perp}$ and so it defines a flow \mathcal{D}^{\perp} on M.

REMARK. Proposition 2.1 is found in [2] for the case of a locally conformal Kähler manifold.

Kashiwada ([4]) introduced a weaker notion than a generalized Hopf manifold. Denote the Levi-Civita connection of M by ∇ .

DEFINITION. A locally conformal almost Kähler manifold (M,J,g) is called an almost generalized Hopf manifold if the Lee form α is ∇ -parallel and $\beta := -J \circ \alpha$ is Killing.

We may assume that the Lee form α of an almost generalized Hopf manifold is of unit length. In this case we have a further CR-foliation.

PROPOSITION 2.2. Let M be an almost generalized Hopf manifold. Then the subbundle $E^{\perp} \oplus D^{\perp}$ on M is integrable. Moreover, $\mathcal{E}, \mathcal{E}^{\perp}, \mathcal{D}^{\perp}$ and $\mathcal{E}^{\perp} \oplus \mathcal{D}^{\perp}$ are all totally geodesic and bundle-like.

Proof. Since α is parallel, both A and $B:=\beta^{\#}$ are unit Killing on M. Hence the corresponding foliations \mathcal{E}^{\perp} and \mathcal{D}^{\perp} are totally geodesic and bundle-like (see [6], [5]). This implies that \mathcal{F} is also totally geodesic and bundle-like. For the foliation $\mathcal{E}^{\perp} \oplus \mathcal{D}^{\perp}$ it is proved in [4]. Indeed, it holds $\nabla_A B = \nabla_B B = 0$.

3. A canonical subfoliation of a CR-foliation

In view of Proposition 2.1, we observe that the corresponding totally real subbundles of three CR-foliations $\mathcal{E}, \mathcal{E}^{\perp}$ and \mathcal{D}^{\perp} on a locally conformal almost Kähler manifold M are D^{\perp}, E^{\perp} and D^{\perp} respectively. They are all integrable. This observation can be extended as follows.

PROPOSITION 3.1. Let $\mathcal F$ be a CR-foliation of an almost Hermitian manifold M. Then the totally real subbundle D_F^{\perp} for $\mathcal F$ is integrable if and only if

$$d\Omega(V, W, X) = 0$$
 $V, W \in \Gamma(D_F^{\perp}), X \in \Gamma(D_F).$

Proof. A direct computation yields for each $V, W \in \Gamma(D_F^{\perp})$ and $X \in \Gamma(D_F)$

$$3d\Omega(V, W, X) = V\Omega(W, X) + W\Omega(X, V) + X\Omega(V, W)$$
$$-\Omega([V, W], X) - \Omega([W, X], V) - \Omega([X, V], W)$$
$$= g([V, W], JX).$$

This completes the proof.

COROLLARY 3.2. Under the same situation as in Proposition 3.1, if, in particular, M is locally conformal almost Kähler, then D_F^{\perp} is integrable, so it defines a foliation $\mathcal{D}_{\mathcal{F}}^{\perp}$. $\mathcal{D}_{\mathcal{F}}^{\perp}$ is called the canonical subfoliation for a CR-foliation \mathcal{F} .

Proof. For
$$V, W \in \Gamma(D_F^{\perp})$$
 and for $X \in \Gamma(D_F)$,

$$\frac{1}{2}d\Omega(V, W, X) = \alpha(V)\Omega(W, X) + \alpha(W)\Omega(X, V) + \alpha(X)\Omega(V, W)$$

$$= 0$$

by means of (2.1). It follows from Proposition 3.1 that D_F^{\perp} is integrable. \Box

From Proposition 2.2 we know that if M is an almost generalized Hopf manifold then all the subfoliations of four CR-foliations are totally geodesic and bundle-like. Moreover, the converse is true. Indeed, we have the following Proposition.

PROPOSITION 3.3. Let M be a locally conformal almost Kähler manifold. Then the followings are equivalent.

- (1) M is an almost generalized Hopf manifold,
- (2) non-trivial subfoliations \mathcal{E}^{\perp} and \mathcal{D}^{\perp} are all totally geodesic and bundle-like.

Proof. Since α is closed, it suffices to notice that A is Killing if and only if α is parallel. It follows that both A an B are unit Killing, or equivalently \mathcal{E}^{\perp} and \mathcal{D}^{\perp} are all totally geodesic and bundle-like if and only if M is an almost generalized Hopf manifold.

4. Some cohomology classes for the canonical subfoliation

In section 3, we see that a CR-foliation \mathcal{F} on a locally conformal almost Kähler manifold has a canonical subfoliation $\mathcal{D}_{\mathcal{F}}^{\perp}$ defined by its totally real subbundle. In this section we investigate some cohomology classes for $\mathcal{D}_{\mathcal{F}}^{\perp}$.

PROPOSITION 4.1. Let \mathcal{F} be a CR-foliation of a locally conformal almost Kähler manifold M. Then the mean curvature vector field κ of the maximal complex subbundle D_F for \mathcal{F} satisfies

(4.1)
$$g(\kappa, V) = -\alpha(V) \quad V \in \Gamma(D_F^{\perp}).$$

Proof. For each $X \in \Gamma(D_F)$ and $V \in \Gamma(D_F^{\perp})$, we compute

(4.2)
$$g(\nabla_X X, V) = -g(JX, J\nabla_X V) = g(JX, \Pi_{JV} X) + g(JX, (\nabla_X J) V),$$

where Π denotes the Weingarten map for \mathcal{F} . Similarly, we find

$$(4.3) g(\nabla_{JX}JX,V) = -g(X,\Pi_{JV}JX) - g(X,(\nabla_{JX}J)V).$$

We may take the trace of the previous equations with respect to a local orthonormal frame field $\{X_i, JX_i\}_{i=1}^b$ for D_F ($2b := \dim D_F$) such that $H(X_i, X_i) = 0$, where

$$H(Y,Z) := (\nabla_Y J)Z + \beta(Z)Y - g(Y,Z)B + \alpha(Z)JY - \Omega(Y,Z)A.$$

Then (4.2) and (4.3) imply

$$\begin{aligned} 2bg(\kappa,V) &= \sum g(\nabla_{X_i}X_i,V) + g(\nabla_{JX_i}JX_i,V) \\ &= \sum g((\nabla_{X_i}J)V,JX_i) - g((\nabla_{JX_i}J)V,X_i) \\ &= -2b\alpha(V), \end{aligned}$$

which yields (4.1).

COROLLARY 4.2. Under the same situation as in Proposition 4.1, D_F is minimal if and only if $D_F^{\perp} \subset E = \ker \alpha$.

Given a foliation \mathcal{F} on a manifold M, we have the basic complex $(\Lambda_B(M), d_B)$ as a subcomplex of the De Rham complex $(\Lambda(M), d)$ on M. Let $H_B(\mathcal{F}) := H(\Lambda_B(M), d_B)$ be the basic cohomology for \mathcal{F} (see [6]).

THEOREM 4.3. Let M be a 2n-dimensional locally conformal almost Kähler manifold with nowhere vanishing Lee form α . Let \mathcal{F} be a compact CR-foliation of M with $D_F^{\perp} \subset E$. Then the transversal volume form ν for $\mathcal{D}_{\mathcal{F}}^{\perp} \subset \mathcal{F}$ defines a basic cohomology class

$$c(\mathcal{D}_{\mathcal{F}}^{\perp}) := [\nu] \in H_B^{2b}(\mathcal{D}_{\mathcal{F}}^{\perp}),$$

where b denotes the complex dimension of D_F . If $\mathcal{D}_{\mathcal{F}}^{\perp}$ is minimal and D_F is integrable, then we have

- (1) $c(\mathcal{D}_{\mathcal{F}}^{\perp}) \neq 0$,
- (2) if, moreover, $\mathcal{F} \subset \mathcal{E}$ then

$$H_R^{2k}(\mathcal{D}_{\mathcal{T}}^{\perp}) \neq 0 \quad 0 < k \le b.$$

Proof. The transversal volume form ν for $\mathcal{D}_{\mathcal{F}}^{\perp}$ is given by

$$\nu := \omega_1 \wedge \cdots \wedge \omega_{2h}$$

where $\{\omega_i\}$ is the dual frame field of an orthonormal frame field $\{X_i, JX_i\}$ of D_F . Then Corollaries 3.2 and 4.2 imply that if $D_F^{\perp} \subset F$ then $d\nu = 0$ ([2], [6]). Thus $c(\mathcal{D}_{\mathcal{F}}^{\perp}) \in H_B^{2b}(\mathcal{D}_{\mathcal{F}}^{\perp})$.

Now note that the restriction Ω_F of Ω to F is a closed 2-form satisfying

Since $\mathcal{F} \subset \mathcal{E}$, we have that Ω_F is harmonic. The rest of the proof follows by a similar argument as in [2].

For example, \mathcal{E} appeared in Proposition 2.1 satisfies $D_E^{\perp} \subset E$. In this case, $c(\mathcal{D}_{\mathcal{E}}^{\perp})$ is explicitly represented by a 2(n-1)-form $\frac{(-1)^{n-1}}{(n-1)!}(d\beta)^{n-1}$.

From now on we consider the Godbillon-Vey class for the canonical subfoliation $\mathcal{D}_{\mathcal{F}}^{\perp}$. We have seen in Proposition 2.2 that in an almost generalized Hopf manifold, any $\mathcal{D}_{\mathcal{F}}^{\perp}$ of four CR-foliations is bundle-like. Thus it has vanishing secondary characteristic classes ([3], [6]). In general $\mathcal{D}_{\mathcal{F}}^{\perp}$ is not bundle-like. However, we have the following Theorem.

THEOREM 4.4. Let M be a locally conformal almost Kähler manifold and let \mathcal{F} be a CR-foliation of M. Then the Godbillon-Vey class $GV(\mathcal{D}_{\mathcal{F}}^{\perp})$ is given by the formula

$$GV(\mathcal{D}_{\mathcal{F}}^{\perp}) = (2b)^{2b+1} [\alpha_F \wedge (d\alpha_F)^{2b}] = 0,$$

where $2b = \dim D_F$ and α_F is the restriction of the Lee form α to \mathcal{F} .

Proof. Recall the definition of the Godbillon-Vey class for $\mathcal{D}_{\mathcal{F}}^{\perp}$ given by

$$(4.5) GV(\mathcal{D}_{\mathcal{T}}^{\perp}) := [\psi \wedge (d\psi)^{2b}],$$

where ψ is 1-form on $F \subset TM$ satisfying $d\nu = \psi \wedge \nu$. Now from (4.4) we have

$$(-1)^b b! d\nu = b d\Omega_F \wedge \Omega_F^{b-1} = b 2\alpha_F \wedge \Omega_F^b$$
$$= b(-1)^b b! 2\alpha_F \wedge \nu.$$

Therefore, we may choose $\psi = 2b\alpha_{\mathcal{F}}$ and hence from (4.5) we obtain the conclusion.

5. Examples

The simplest example of almost generalized Hopf manifolds is the Riemannian product of K-contact manifolds and the real line \mathbf{R} . On the other hand, Proposition 2.2 provides an example of almost generalized Hopf manifolds in the almost Hermitian submersion (onto almost Kähler manifolds) context (see [10]).

In this section, we construct a new one from an old locally conformal almost Kähler (in particular, an almost generalized Hopf) manifold. Our results extend those in [9] to the almost version. We start with recalling several definitions.

DEFINITION. An almost contact metric manifold $(N, \varphi, \xi, \eta, h)$ is said to be almost quasi-Sasakian if its fundamental form Φ is closed. Moreover, when Φ is closed and η is integrable (namely, $\eta \wedge d\eta = 0$), it is said to be special almost quasi-Sasakian.

A locally conformal special almost quasi-Sasakian manifold is characterized by ([9])

$$(5.1) d\Phi = 2\omega \wedge \Phi, \ \eta \wedge d\eta = 0,$$

where ω is a closed 1-form satisfying

$$[\varphi, \varphi] + d\eta \otimes \xi = (\omega \wedge \eta) \otimes \xi.$$

Here $[\varphi, \varphi]$ denotes the Nijenhuis tensor of φ .

PROPOSITION 5.1. Let (M,J,g) be a locally conformal almost Kähler manifold and τ be a closed and nowhere vanishing Pfaff form on M. Then the leaves of foliation \mathcal{F}_{τ} defined by $\tau=0$ carry an induced locally conformal almost quasi-Sasakian structure, which is special if $\tau \circ J$ is integrable.

Proof. Let φ and h be the restriction of J and g to the subbundle F_{τ} given by $\tau = 0$ and $\xi := -J\zeta$, where ζ denotes the unit vector field normal to F_{τ} . Then the dual 1-form to ξ is $\eta = \frac{\tau \circ J}{|\tau|}$. It is easy to see that (φ, ξ, η, h) yields an almost contact metric structure on the leaves of the foliation \mathcal{F}_{τ} .

The fundamental form Φ of φ satisfies

$$\Phi(X,Y) = \Omega(X,Y), \ d\Phi(X,Y,Z) = d\Omega(X,Y,Z)$$

for any $X, Y, Z \in \Gamma(F_{\tau})$. It follows from (2.1) that

$$d\Phi = \bar{\alpha} \wedge \Phi$$
.

where $\bar{\alpha}$ is the restriction of the Lee form α on M to F_{τ} .

П

PROPOSITION 5.2. Let $(N, \varphi, \xi, \eta, h)$ be a locally conformal special almost quasi-Sasakian manifold. Then $\eta = 0$ defines a foliation \mathcal{F}_{η} whose leaves carry an induced locally conformal almost Kähler structure.

Proof. It is proved in [1] that the leaves of \mathcal{F}_{η} carry an induced almost Hermitian structure whose fundamental form Ω satisfies

$$\Omega(X,Y) = \Phi(X,Y), \ d\Omega(X,Y,Z) = d\Phi(X,Y,Z)$$

for any $X, Y, Z \in \Gamma(F_n)$. Hence (5.1) implies

$$d\Omega = 2\bar{\omega} \wedge \Omega$$
,

where $\bar{\omega}$ is the restriction of ω to F_n .

Combined Proposition 5.1 and Proposition 5.2, we conclude that

COROLLARY 5.3. Let (M,J,g) be a locally conformal almost Kähler manifold (resp. an almost generalized Hopf manifold). Let τ be a closed and nowhere vanishing Pfaff form on M. If $\tau \circ J$ is integrable then the leaves of the foliation \mathcal{F}_{η} carry an induced locally conformal almost Kähler structure (resp. an almost generalized Hopf structure).

Now let $(N, \varphi, \xi, \eta, h)$ be a (2n-1)-dimensional almost Kenmotsu manifold, that is, an almost contact metric manifold such that

$$(5.2) d\eta = 0, \ d\Phi = 2\eta \wedge \Phi.$$

It can be characterized as a locally conformal special almost quasi-Sasakian manifold with $\omega = \eta$ in (5.1). Consider the Riemannian product manifold $M := N \times \mathbf{R}$, which admits an almost Hermitian structure. Let T be the unit tangent vector field of \mathbf{R} and ω be its dual form. Then the fundamental form Ω on M satisfies

$$\Omega = \Phi - \omega \wedge n$$
.

It follows that

$$d\Omega = 2n \wedge \Omega$$
.

so that M is a 2n-dimensional locally conformal almost Kähler manifold whose Lee form is η . If we take the Pfaff form τ as η in Corollary 5.3 then $\tau \circ J = \omega$, which is parallel. In this case, the leaves of the foliation \mathcal{F}_{η} carry an induced almost Kähler structure.

References

- [1] D. E. Blair and G. D. Ludden, Hypersurfaces in almost contact manifolds, Tohoku Math. J. 21 (1969), 354–362.
- [2] B. Y. Chen and P. Piccinni, The canonical foliations of a locally conformal Kähler manifold, Ann. Math. Pura Appl. 141 (1985), 289-305.
- [3] F. W. Kamber and Ph. Tondeur, G-foliations and their characteristic classes, Bull. Amer. Math. Soc. 84 (1978), 1086-1124.
- [4] T. Kashiwada, On αβ-Einstein almost generalized Hopf manifolds, Sci. Rep. Ochanomizu Univ. 46 (1995), 1–7.
- [5] H. K. Pak, On one-dimensional metric foliations in Einstein spaces, Illinois J. Math. 36 (1992), 594-599.
- [6] Ph. Tondeur, Foliations on Riemannian Manifolds, Springer-Verlag, 1988.
- [7] I. Vaisman, On locally conformal almost Kähler manifolds, Israel J. Math. 24 (1976), 338-351.
- [8] _____, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. Appl. 12 (1979), 263–284.
- [9] _____, Conformal changes of almost contact metric manifolds, Lecture Notes in Math. 792, Berlin-Heidelberg-New York (1980), 435–443.
- [10] B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1976), 147–165.

Tae Wan Kim
Department of Mathematics
Silla University
Pusan 617-736, Korea
E-mail: twkim@silla.ac.kr

Hong Kyung Pak
Faculty of Information and Science
Daegu Haany University
Kyungsan 712-715, Korea
E-mail: hkpak@ik.ac.kr