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CONVERGENCE OF WEIGHTED SUMS
FOR DEPENDENT RANDOM VARIABLES

HAN-YING LIANG, DONG-XIA ZHANG, AND JONG-IL BAEK

ABSTRACT. We discuss in this paper the strong convergence for
weighted sums of negative associated (in abbreviation: NA) arrays.
Meanwhile, the central limit theorem for weighted sums of NA vari-
ables and linear process based on NA variables is also considered.
As corollary, we get the results on iid of Li et al. ({10]) in NA
setting.

1. Introduction

Many useful linear statistics based on a random sample are weighted
sums of i.i.d. random variables. Examples include least-squares esti-
mators, nonparametric regression function estimators and jackknife es-
timates, among other. In this respect, studies of strong convergence for
these weighted sums have demonstrated significant progress in proba-
bility theory with applications in mathematical statistics. Up to now,
various limit properties for sums of i.i.d. random variables have been
studied by many authors.

The most commonly studied method of summation is that of Cesaro’s.
Set, for a > —1,

a+1)(a+2) - (a+n)
n!

Agz( n=12,... and Af = 1.

Let {X, X,,n > 1} be a sequence of i.i.d. random variables. One says
that X satisfies Cesaro Law of Large Numbers of order «,0 < o < 1, if
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and only if
1 n
T Z Ag:,chk convergences a.s. as n — oo.
n k=0
It is well known that

.1 S gan1
7}1{{)10 ZE ZA?‘L_ka = U a.s.
k=0
if and only if E|X[* < 0o and EX = p.

For oo =1 this result is, of course, the classical Kolmogorove strong law.
For 1/2 < a < 1 the proof is due to Lorentz ([14]); for 0 < a < 1/2 it
follows from Chow and Lai ([4]). the case a = 1/2 was treated by Déniel
and Derriennic ([5]). Heinkel ([7]) established a version of this result in
a Banach space setting. Li et al.({10]) studied the convergence rates of
Cesaro Law of Large Numbers and pointed out the following result.

THEOREM 1.1. Let {X, X,,n > 1} be a sequence of i.i.d. random
variables.
(i) For 0 < a < 1/2, if Ee!'X! < 0o for all t > 0, then

1 & o _
e ZAg—i(Xk — EX)=o0(n"%logn) a.s.

™ k=0

(ii) For1/2<a<1,ifE(X — EX)? =1, then
n
(20— 1)V I2(a)nV/2(1/A%) Y ASTH (X, — EX) 25 N(0,1).
k=0
However, many variables are dependent in actual problems. For ex-
ample, negatively associated random variables, its definition is as follows:

DEFINITION. A finite family of random variables {X;,1 < ¢ < n} is

said to be negatively associated (NA) if for every pair of disjoint subsets
Aand Bof {1,2,...,n},

Cov(fl(Xivi € A)’fZ(Xjaj € B)) S 0

whenever f; and fy are coordinatewise increasing and such that the
covariance exists. An infinite family of random variables is NA if every
finite subfamily is NA.

This definition is introduced by Alam and Saxena ([1]) and carefully
studied by Joag-Dev and Proschan ([8]). As pointed out and proved
by Joag-Dev and Proschan ([8]), a number of well known multivariate
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distributions possess the NA property, such as (a) multinomial, (b) con-
volution of unlike multinomials, (¢) multivariate hypergeometric, (d)
Dirichlet, (e) Dirichlet compound multinomial, (f) negatively correlated
normal distribution, (g) permutation distribution, (h) random sampling
without replacement, and (i) joint distribution of ranks. Perhaps, the
significance of NA may lie, however, in the perception that NA is the
appropriate modeling for several species competing for the same limited
resources. Because of its wide applications in multivariate statistical
analysis and systems reliability, the notion of NA have received consid-
erable attention recently. we refer to Joag-Dev and Proschan ([8]) for
fundamental properties, Matula ([15]) for the three series theorem, Su
et al. ([23]) and Shao ([20]) for moment equalities, Shao and Su ([21])
for law of the iterated logarithm, Liang and Su ([11]) and Liang ([12])
for complete convergence, Roussas ([19]) for the central limit theorem of
random fields. In addition, Kim and Baek ([9]) discussed a central limit
theorem for linear processes generated by linearly positively quadrant-
dependent process.

In order to extend Theorem 1.1 to NA setting, in this paper, we will
discuss the strong convergence and central limit theorem for weighted
sums of NA random variables.

2. Strong convergence

THEOREM 2.1. Let {Xyi,1 < ¢ < kn,n > 1} be an array of row NA
random variables with EX,; = 0 and

P(|Xni| >2) =0)P(|X|>z) forall 1 <i<kp,n>1 and z >0,

which k,,n > 1 is a sequence of positive integers. Assume that {an;,1 <
i < kp,n > 1} is an array of real numbers satisfying

() max lew| = O(logm)™) (i) zam— (logm)™).

If EetlX| < oo for all t > 0, then
o) kn
an_2P(| Zam'Xml >e)<oo forall e€>0andallr>2
n=1 i=1

REMARK 2.1. The following example shows that Theorem 2.1 does
not hold if the condition (ii) is replaced by the weaker condition (ii)’

Zz 1 m_ ((logn) 1)'



886 Han-Ying Liang, Dong-Xia Zhang, and Jong-Il Baek

ExAMPLE 1. Let {X, X;,7 > 1} be a sequence of iid N(0,1) random
variables. Set
[ 1/[logn], if 1< < [logn,
i =1 0, if logn]+1<i<mn,

where [z] denotes the integer part of 2. Then the condition (i) of Theo-
rem 2.1 and the above condition (ii)’ are easily satisfied.

Note that X ~ N(0,1), it follows that EetX < 2¢t*/2 for all ¢ > 0.

Since Z[log"] Xi/+/[logn] ~ N( 0,1), we have by Lemma 5.1.1 in Stout
([22]) that

flog n]

P(|Zam-Xi| >1) = Z X;/+/|logn] | > v/[logn])

> 2exp{—[logn]} >2/n

for all sufficiently large n, and so

oo

ZnT"QPﬂ Zam-Xﬂ >1)=o00 forallr>2,

n=1

i.e. Theorem 2.1 does not hold.

COROLLARY 2.1. Let {X;,7 > 0} be a sequence of NA random vari-
ables and P(|X;| > z) = O(1)P(|X| > z) for all i > 0 and z > 0. For
0 < a<1/2, if EetX! < oo for all t > 0, then

AQZA (Xx — EXi) =o(n"%logn) a.s.
™ k=0

3. Central limit theorem

THEOREM 3.1. Let {X;,—00 < i < oo} be a sequence of mean zero
NA random variables satisfying

(3.1) Z |cov(Xg, X;)] = 0 as u— oo uniformly for k> 1.
Jilk—j1Zu

Assume that {an;,1 <i < n,n > 1} is an array of real numbers satisfy-

ing

(3.2) - Zafn =0(1) and 112%}% lanil > 0 as n — oo

and that Var(} ;- ; aniX;) — 1.
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(a) If X, is uniformly integrable in Lg, then
n

Zam-Xi —12—) N(O, 1),
i=1

(b) Put & = 3°72,¢;jXt—j. Here {c;} is a sequence of real numbers
with C(1) = >>224¢; # 0 and 332, jlej| < oo. If X; is uniformly
integrable in Ly and maxi<i<n |ani| = O(n~Y/ 2), then

> ani&i = N(0,C2(1)),

i=1
(c) Putn, =332 c;Xi ;. Here{c;} is a sequence of real numbers
with D(1) = 3352 _ ¢j # 0 and Y52 _  j%c2 < co.~If sup; E|X;**® <

oo for any 6 > 0 and maxi<i<n |@ni| = O(n_l/z), then

Zn:amm 2, N(0, D%(1)).

i=1

COROLLARY 3.1. Let {X;,i > 1} be a sequence of NA random vari-
ables. For 1/2 < a < 1, if X; is uniformly integrable in Ly, then

Ry = a2 - )V?r2(a)nV?(1/A2) Y ASTH(X), - EX) 2 N(0,02),
k=0

where 02 = limp_,o0 VarR,,.
REMARK 3.1. In Corollary 3.1, if {X,X,,n > 1} is a sequence of
iid. random variables and E(X — EX)? = 1, then ¢® = 1. Since

independent r.v.’s are a special case of NA r.v.’s, Corollarys 2.1 and 3.1
extend Theorem 1.1 to NA case.

4. Proofs of Theorems 2.1 and 3.1

In this section, a < b means a = O(b), a* = max(0,a),a™ =
max (0, —a). Let C and c denote positive constant whose values are
unimportant and may vary at different place.
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it suffices to show

Proof of Theorem 2.1. Since an; = a,}, — a7,

(4.3) }: "2 p( |Za+Xm|>e)<oo for any € > 0,
n=1
(&, ¢] n

(4.4) Zn’"_zP(I Za;iXm-[ >€)<oo foranye>0.
n=1 =1

We prove only (4.3), the proof of (4.4) is analogous. To prove (4.3), we

need only to prove

o0

(4.5) an lp Za"' Xni >€) <oo for any € > 0,
=1

o0
(4.6) an 2P(Z af Xn; < —€) < oo for any € > 0.
=1

We first prove (4.5). From the definition of NA variables, we know
that {a Xni,1 <4 < kpyn > 1} is still an arrays of row NA random
variables. Noticing e* < 1+ a + 11‘26'“" for all z € R, hence by using
lemma 1 of Matula ([15]), we get for t = Mlogn/e, where M is a large

constant and will be specified later on,

o0 kn
> 0 PP a0k Xni > €)
n=1 i=1
o k
< an—2e—etEetZ;‘1 al Xn;
n=1
oo lli?'n, +
< S et
n=1 i
oo
< QT MH[1+ S BX Xl
n=1 i=1
o0 kn
< YoM+ Cllogn)(ay)* Eel X
o0 kn
< Yo Mexp{Cllogn)® Y (a7)’)

n=1 =1



Convergence of weighted sums for dependent random variables 889
o0
Z nr+o—@+M) o

provided M > (r +¢€) — 1. Thus, (4.5) is proved.

By replacing X,; by —X,; from the above statement, and noticing
{a:;i(—Xm),l <4 < kp,n > 1} is still an arrays of row NA random
variables, we know that (4.6) holds.

LeMMA 1. (Cai and Roussas ([3])) Let A and B be disjoint subsets
of N, and let {X;,j € AU B} be NA.

(i) Let f : R#A R and g : R#B — R be partially differen-
tiable with bounded partial derivatives, and let ||0f/0t;|l stand for
the supnorm. Then

|Cov{f<xi;z' € 4),9(X;:j € B)}
<Y lotlo | gjnwlcmxi,xj)r

i€A jEB

(ii) Ifqg: R — R is a bounded differentiable function with bounded
derivative, then

Cov{TT a(xa), [T aX} < NalE#5721413, 3 D 1Cov(Xi, Xj)-

i€A jEB i€A jEB

Proof of Theorem 3.1. (a) This part has been proved partially in
Liang and Jing ([13]), but, for the sake of easy reference, we give a proof
here, too. Without loss of generality, we assume that a,; = 0 for all
1 >n. Note that, for 1 <u<n-—1

n n
Z |anian;Cov(X;, X;)| < sup| Z Cov(X;, X; )|(Z iz),
§,5=1,li—j| >u ko k—j>u =1

and hence, by (3.1) and (3.2), for a fixed small € > 0, we can find a
positive integer u = u. such that

0< Z |anianjCov(Xi,Xj)| <eEe.
4,i=1,i—j|>u
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Denote by [z] the integer part of x and define

1
I("'[;L
u(j+1) .
Ynj = Z 0 Xi, J=0,1,2,...
i=uj+1
Aj={i:2Kj <i<2Kj+ K, |Cov(Yps, Ynit1)l
9 2Kj+K
<% _Z' Var(Ya)}-
1=2Kj

Since 2|Cov(Yps, Yn,it+1)| £ Var(Yn:)+Var(Yni+1), we get that for every
J the set A; is not empty. Now we define the integers mi,ms,...,my
recurrently by mg = 0:
mji1 = min{m : m > m;,m e A;}
and put
mMj+1

an: Z Yni,j:0,1,2,...

i=m;+1
Aj={u(m; +1)+1,...,u(mjy1 + 1)}
‘We observe that

Znj= > amXp, §=0,1,...
kGA]‘

It is easy to see that every set AA; contains no more than 3Ku elements.
Thus, by (3.2), we know that the uniformly integration of {X2,i > 1}
implies the uniformly integration of {Z,;,1 <14 < n,n > 1}, and hence
{Zni,1 < i < m,n > 1} satisfies the Lindeberg’s Condition. It remains
to observe that by Lemma 1, for any real number ¢

|Eexp(ity  Zy;) — | | E exp(itZa,)]

j=1 i=1
n—1
< |Cov(exp(it Y  Znj),exp(itZnn))|
j=1
n—1 n—1

+|E exp(itZun)||E exp(it Z Znj) — H E exp(itZ,;)|
j=1 j=1
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< t2 Z |Cov(Zni, Znj)|

1<i<j<n
= 2 Y |CoV(Zni, Znj)| + > |CoV(Znis Znj)]
1<i<j<n, li—jl=1 1<i<j<n, |i—j|>1

< E |anian;||Cov(X;, X;)|

1<i<i<n,li—jl2u

n
+ Z |COV(Ynmj ) Y’n,mj+1)u
j=1

O(1) &

) Z Var(Yn)] < et?.

t2 ——t
< tle+ K 2

Now, Theorem 3.1(a) is proved by Theorem 4.2 in Billingsley ([2]).
(b) Note that

& = C(1) Xi+ Xro1 — Xk

where X =372, ¢; Xy—;j and ¢;=377°, ; ¢;. Hence

n n n

Zanigi = C(l) Zanka + Zank(Xk—l - Xk) = In + Jn-
i=1 k=1 k=1

By (a), we get I, —= N(0,C2(1)).

To prove J, LA 0, we here state Abel Inequality (see p.32, Theorem
1 of Mitrinovic ([16])):

Let A1, Ay,...,Ap; B1,Bo,...,B, (B1>By>--> B, > 0) be two
sequences of real numbers, and let Sy = Zle Aiy, My = minj<p<pn Sk
and Mg = max)<k<n Sk. Then

n
(4.7) BiMy < AxBy < BiMs.
k=1

Without loss of generality, assume that a,; > ano > -+ > ap,. Let
Bs =aps — np, 1 <s<n-—1, B, =0. Applying (4.7) we have

n n
ol < 1D (@nk = @nn)(Xk-1 = Xe)l + 1D ann(Xp-1 — Xi)|
k=1 k=1

m
< 2 - -
< 1rsnlgsxnlank annllénn?%(nIE(Xk 1= X))
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+lannll Xo — Xn |
< @I Ko |+ ma | S

_ ~1/2v(| T iy
(4.8) = O(n ) Xo |+ max | Xm|).

Since } 52, jlcj| < o0 = > 5ol cj | < oo (see Phillips and Solo ([18]),
Lemma 2.1),

oo

(4.9) E| Xo| <) 1% |EIX4| < 0.
=0

On the other hand, observe that

m X0
| Xm | < D1 N Xmil + > | Cons | X ]
=0 i=1
(4.10) < max |X|(ZI ¢i | +Z|cz||X il
i=0 =1
with &= > g1 lcjl. Note that
o0 oo A [e,0)] oo oo
(4.11) DAGISY =" > lal <Y ilel < oo,
j=1 j=1 j=11i=j+1 j=1

— P . .
and n~1/2 maxo<m<n | Xm| — 0 is equivalent to

n
nt S X2 I(|Xm| > V%) B0, Ve>0
m=0
(cf. Hall and Heyde ([6]), p.53), which, together with (4.8)-(4.11), fol-
lows J,, Lt 0.

(c) Note that

m=D)X; + Xiy — Xi + Xip1 — X,

0o~ = 0 = ~ oo
Where X = Z'—o i Xi—jy Xi=; ¢;Xi—j and ¢; = Zk:j+1 Ck,

J=—00
=il
Slmllarly to the proof in (b), we need only prove that
n_1|)?0|2 = op(1), n! max IXm| = op(1),

1<m<n
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Lo 2 _ = 5
n 1|X1| =o0p(1), n 1 max | X m|* = o0p(1).
1<m<n
By Z?i_oo jzc§ < 0o, we can get E|)’50|2 < oo and E|)?1|2 < 00, which

follow 71| Xg|? = 0p(1) and n X2 = op(1), respectively.
On the other hand, note that

n~! max |Xn|?= op(1) if and only if

1<m<n
(4.12) E Z X2I(X? > nc) = op(1) for any ¢ > 0.
"=
-1 S 9 _ . .
" max | X m|® =0p(1) if and only if
1 n o ~2 ~2
(4.13) —ZXiI(Xi > nc) = op(1) for any ¢ >0
"=

~ =2
(cf. Hall and Heyde ([6]), p.53). Since {X?} and {X,} are uniformly
integrable by 22 j*c? < 0o and sup; F| X;|?*° < oo, by (4.12) and
(4.13) we get

-1 o2 _ -1 B2 2 __
n” max [ Xm|®=0p(1), n max | Xom|™ = 0p(1).

References

[1] K. Alam and K. M. L. Saxena, Positive dependence in multivariate distributions,
Comm. Statist. Theory Methods A10 (1981), 1183-1196.

[2] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

[3] Z. W. Cai and G. G. Roussas, Berry-Esseen bounds for smooth estimator of dis-
tribution function under association, Nonparametric Statist. 11 (1999), 79-106.

[4] Y. S. Chow and T. L. Lai, Limiting behavior of weighted sums of independent
random variables, Ann. Probab. 1 (1973), 810-824.

[5] Y. Déniel and Y. Derriennic, Sur la convergence presque sure, au sens de Cesaro
d’ordre a,0 < a < 1, de variables aléatoires et indépendantes et identiquement
distribuées, Probab. Theory Related Fields 79 (1988), 629-636.

[6] P. Hall and C. C. Heyde, Martingale Limit Theory and Its Applications, New
York, Academic Press, 1980.

[7} B. Heinkel, An infinite-dimensional law of large numbers in Cesdro’s sense, J.
Theoret. Probab. 3 (1990), 533-546.

[8] K. Joag-Dev and F. Proschan, Negative association of random variables with ap-
plications, Ann. Statist. 11 (1983), 286-295.

[9] T.-S. Kim and J.-I. Baek, A central limit theorem for stationary linear processes
generated by linearly positively quadrant dependent process, Statist. Probab. Lett.
51 (2001), 299-305.



894 Han-Ying Liang, Dong-Xia Zhang, and Jong-1l Baek

[10] D. L. Li, M. B. Rao, T. F. Jiang and'X. C. Wang, Complete convergence and al-
most sure conver-gence of weighted sums of random variables, J. Theoret. Probab.
8 (1995), 49-76.

[11] H. Y. Liang and C. Su, Complete convergence for weighted sums of NA sequences,
Statist. Probab. Lett. 45 (1999), 85-95.

[12] H. Y. Liang, Complete convergence for weighted sums of negatively associated
random variables, Statist. Probab. Lett. 48 (2000), 317-325.

[13] H.Y. Liang and B. Y. Jing, Asymptotic properties for estimates of nonparametric
regression models based on negatively nssociated sequences, Submitted, 2002.

[14] G. G. Lorentz, Borel and Banach properties of methods of summation, Duke
Math. J. 22 (1955), 129-141.

[15] P. Matula, A note on the almost sure convergence of sums of negatively depen-
dences random variables, Statist. Probab. Lett. 15 (1992), 209-213.

[16] D. S. Mitrinovic, Analytic Inequalities, New York, Springer, 1970.

[17] M. Peligrad and S. Utev, Central limit theorem for linear processes, Ann. Probab.
25 (1997), no. 1, 443-456.

[18] P. C. B. Phillips and V. Solo, Asymptotics for linear processes, Ann. Statist. 20
(1992), 971-1001. '

[19] G. G. Roussas, Asymptotic normality of random fields of positively or negatively
associated processes, J. Multivariate Anal. 50 (1994), 152-173.

[20] Q. M. Shao, A comparison theorem on mazimum inequalities between negatively
associated and independent random variables, J. Theoret. Probab. 13 (2000), 343
356.

[21] Q. M. Shao and C. Su, The law of the iterated logarithm for negatively associated
random wvariables, Stochastic Process. Appl. 83 (1999), 139-148.

[22) W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974.

[23] C. Su, L. C. Zhao and Y. B. Wang, Moment inequalities and week convergence
for negatively associated sequences, Sci. China Ser. A 40 (1997), 172-182.

Han-Ying Liang and Dong-Xia Zhang
Department of Applied Mathematics
Tongji University '
Shanghai 200092, P. R. China
E-mail: hyliang83@hotmail.com

Jong-I1 Baek ‘

School of Mathematics & Informational Statistics
and Institute of Basic Natural Science
Wonkwang University

Ik-San 570-749, Korea

E-mail: jibaek@wonkwang.ac.kr



