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PACKING DIMENSION OF MEASURES
ON A RANDOM CANTOR SET

IN-S00 BAEK

ABSTRACT. Packing dimension of a set is an upper bound for the
packing dimensions of measures on the set. Recently the packing
dimension of statistically self-similar Cantor set, which has uniform
distributions for contraction ratios, was shown to be its Hausdorff
dimension. We study the method to find an upper bound of pack-
ing dimensions and the upper Rényi dimensions of measures on a
statistically quasi-self-similar Cantor set (its packing dimension is
still unknown) which has non-uniform distributions of contraction
ratios. As results, in some statistically quasi-self-similar Cantor set
we show that every probability measure on it has its subset of full
measure whose packing dimension is also its Hausdorff dimension
almost surely and it has its subset of full measure whose packing
dimension is also its Hausdorff dimension almost surely for almost
all probability measure on it.

1. Introduction

Multifractal theory about random fractal made it possible to compare
the Hausdorff dimension ([6], [8]) with packing dimension ([8], [13]) of
statistically self-similar Cantor set ([6]). In fact, in 1994, Falconer and
Olsen ([7], [11]) published their papers concerning the Hausdorff and
packing dimensions of statistically self-similar set to show that the Haus-
dorff and packing dimensions of the support of measures are equal. It
means that the statistically self-similar Cantor set is Taylor-regular with
probability 1. In 1997, it ([1]) was shown that a perturbed type ran-
dom Cantor set which is a statistically quasi-self-similar Cantor set in
some sense has a similar result for Hausdorff dimension as the statisti-
cally self-similar Cantor set. A perturbed type random Cantor set as a
variation of statistically self-similar set permits some trembling in each
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stage of distributions of contraction ratio random variables. The key
idea to consider the perturbed type random Cantor set is to control the
errors that can be allowed in the distribution to construct statistically
self-similar Cantor set. Unlike the multifractal study to use a measure
on the Cantor set, we use the local measure ([3]), which is not a measure,
to investigate the packing dimension. We note that Falconer and Olsen
([7], [11]) used a covering function which is a pre-type of a measure to
be applied to energy theory to find out its Hausdorff dimension, which
can be called a global approach for the investigation of Cantor set in
some sense, while using the local measure can be called a local approach
for the study of Cantor sets in some sense. Anyway as an attempt to
find the packing dimension of a statistically quasi-self-similar set or a
perturbed type random Cantor set whose distributions of contraction
ratios are not uniform, we study an upper bound for the packing dimen-
sions of Borel probability measures defined on the set using the local
approaches. We recall a deranged Cantor set ([2]). Let I, =[0,1]. We
can obtain the left subinterval I, and the right subinterval I > of I
deleting middle open subinterval of I; inductively for each 7 € {1,2}",
where n = 0,1,2,.... Consider E, = Ureq12yn17. Then {E,} is a de-
creasing sequence of closed sets. For each n, we put | I;1 | / | Ir |=¢r1
and | Ira | / | Ir |= ¢r2 for all + € {1,2}", where | I | denotes the
diameter of I. We call F = (2, E, a deranged Cantor set. We note
that if z € F, then there is o € {1,2}" such that 2, Ly = {=}
(Here olk = i1,12,...,9 where 0 = iy,49,...,%k,ik+1,...). Hereafter,
we use 0 € {1,2}N and x € F as the same identity freely. Now we also
recall the definition of the local packing measure ([3]) ¢°(c) of o in F,
q°(0) = limsupy_, o0 (c]+¢3)(C5y1 1 7¢511 2) (€121 F 5 22) -+ (1 TCo 1 2)
for 0 € F. Considering the above definition, we note that a deranged
Cantor set is a perturbed Cantor set ([4]) in a local sense. In this pa-
per we define a statistically quasi-self-similar Cantor set using the local
approaches. We give some extra condition to the perturbed type ran-
dom Cantor set to make a statistically quasi-self-similar Cantor set for
a convenient local approach. Then we find that every probability mea-
sure p defined on {1,2} (or the statistically quasi-self-similar Cantor
set) whose Hausdorff dimension is s almost surely which is a real num-
ber from the expectation equation related to random contraction ratios
has its own subset of full measure whose packing dimension is s also.
Similarly we also find that almost every w (or the statistically quasi-
self-similar Cantor set) has its own subset of full measure whose packing
dimension is s also for almost all probability measure pu.
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2. Main results

Consider a probability space (Q,F, P) (cf. [6]) such that the sample
space

1
Q= {(c1,e2,¢1,1,€1,2,21,€22,C1,1,15++ 1 Cry...) 1 0<a <L e LB 5},

where 7 € {1,2}*,n € N, and § = 0(F1,52, ..., 8n, .. .), Where

Sn = o({(o1, 1] x -+ x (a24...42n, Bot.pan] X [a, 8] X [a,b] X -+
agai<ﬁi§b}).

For w = (c1,¢2,€1,1,€1,2, 21,22, C1,1,1, - - -, Cr, - - -), if we define Cr(w) =
¢, we easily see that C; is a random variable.

We note that if w € Q is given, there corresponds a deranged Cantor
set F( ), where F(w) is determined by the sequence of contraction ratios

= (€1,€2,€1,1,€1,2,€2,1,€2,2, C1, 1,15 - -, Cry - - -

If P is a probability measure on (£, §) such that Cj; and Cj 2 have the
same distribution as C; and Cj respectively where j € {1,2}" and n =
0,1,2,..., and assume that C; are independent random variables, except
Cj, and Cj 2 for each j, we call F(w) a statistically self-similar Cantor
set or self-similar random Cantor set. In [7] and [11], it was shown
that the Hausdorff dimension dimpy F(w) and the packing dimension
dimy, F(w) of F(w) are s where E(C}{ + C3) = 1 for P-almost all w € Q.

From now on, we assume that C; and C} are independent random
variables if j € {1,2}" and j' € {1,2}™ with n # m without any restric-
tion on the distributions of contraction ratio random variables, which
we call F(w) a random Cantor set.

We get some result about the packing dimension dim, F(w) for the
random Cantor set F'(w) using the local packing measures ¢°. From now
on, we mean Xy(o,w) by

Xi(o,w) = (CT+C3)(C1,1+C51 2)(Co121TC02.2) - - (Cop 1+ 5k 2) (W)
for some fixed s related to the expectation without confusion.
LEMMA 1. Let u be a probability measure on ({1,2}N, 8) where
S =0(61,862,...,6,,...)

with &, = o({T x {1,2}N : 7 € {1,2}"}). For each o € {1,2}" and each
s €(0,1) in Xy (o,w), Xi(o,w) is B X Fx41-measurable.
Hence limsup;,_, ., Xk(o,w) is & x F-measurable.
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Proof. For j < k and I=1 or 2 , since
{(o,w) e {1,2N x Q: C’ju,l(w) < B}

= |J mx{1,2"x{wen:C5w) <8}
Te{1,2}J

Xi(o,w) is B x Fr+1-measurable. 0

PROPOSITION A ([3]). Fixw € Q and s € (0,1) in Xi(o,w). Let E,
be a Borel subset of the deranged Cantor set F(w).
IfE, C {0 € F(w) : limsupy_,o, Xi(o,w) < oo}, then dim, E,, < s.

Proof. We define

uell) = ek
(ef+e3)(ef 1+ela) (i i 1 Cig iy 2)
for each 7 = 41,4g,...,4x_1, %, where ¢; € {1,2}. Then u, is extended
to a Borel measure on F(w) for each s € (0,1) and ps(F(w)) = 1 (see
(6], [8])-

Let t > s. Then clearly ¢'(c) = 0. We note that given a small
positive number 7, there exists k such that |I;r11| < 7 < [Iyk| and
[ Isik+1l/ okl = Colg1 > a for all k.

Then for all o € E,,,

lim inf——'ut(Bz(a))
r—0 r
at
> liminf

k—oo (] + th)(Czru,l + Cta|1,2)(cf7|2,1 + cz|2,2) e (cttflk,l + ci|k,2)

= OQ.

Thus the t-dimensional packing measure of E,, is 0 by the packing den-
sity theorem [8]. Hence dim,(E,,) < s. O

We say that

Y g E(Copry + Cojnr )

n=1

converges so fast for each o € {1,2}N, if

H [E(C3 51 + Coe2) — 1](26°)" — 0
k=n
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as n — oo for each ¢ € {1,2}N. We call a random Cantor set F(w)
satisfying the above condition a statistically quasi-self-similar Cantor
set.
We recall a martingale in the limit([10]) which is an adapted sequence
{X,} satisfying
lim sup |E(Xn|Fm) — Xm| = 0.

M—=00 n>m

LEMMA 2. Assume that for each o € {1,2}, 3°°°  log E(ij_L1 +

Cyin—1,2) converges so fast. Then for each o € {1, 2N, {Xn(o,w) 32, is
a martingale in the limit.

Proof. Fix o € {1,2}N. Then [[3>, [E(C? otk1 T o, 9) — 1](2bs)"
Dasn — oo, Given 0 < € < }1, there is N such that (zbs)n <
[Ire L [E(CS ol +Copo) = 1 < oye for all n > N. Since 2b° > 1,

max{1+c T }<3for all n, Where0<cn_w< 1. Then for
a11n2m>N

l—cmyr 11— Cm41
< I | E(C +C
1+ cmy1 14 cnp1 — et O'Ik 1 |k 2)

1+Cm+1<1+0m+1
T l-cu1 T 1-cmpa

Since %J% <1+ 3¢cpy1 and Lzm“ >1-3¢m+1,

3¢
H E( ;In1 +C |n2) 1 < (2b5)m+T"
k=m+1
Since X, (0,w) < (2b°)™FL, for all n >m > N,

|E(Xn(0,w)[Fm) — Xm(o,w)| < 3.

O

THEOREM 3. Let u be any probability measure on {1,2}N.
If 32> log E(C + Cs ) converges so fast for each o €

a|n 1,1 oln—1,2

{1,2}N then for P-almost every w € §, there is F'(w) C F(w) such that
dim,(F'(w)) < s where u(F'(w)) = 1.

Proof. Consider a set
E = {(o,w) € {1,2}N x Q : limsup X} (0, w) < oo}
k—o0
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Then F is ® x §-measurable by Lemma 1. For each o € {1,2}, we
have limsup;_, ., Xx(o,w) < oo for P-almost all w € Q. For, if for each
o € {1,2}N welet X3(0)(w) = Xi(0,w), then Xy (o) is Fx41-measurable.
Now by Lemma 2, for each o € {1,2}N the sequence {Xy(0)} forms
an L!'-bounded martingale in the limit with respect to the increasing
sequence (§y) of sub-o-fields of §, hence converges ([10]) to some random
variable X (o) for P-almost all w. Since F(X(0)) < liminf F(X(0)) <
oo by Fatou lemma, X (o) < oo P-almost surely.
Now we apply the Fubini theorem. That is,

//].Edpd,u:://lEdudP

gives 1 = [ [1gdudP, where 1g is the characteristic function of E.
Hence u(E,) = 1 for P-almost every w where E, = {0 € {1,2}N :
(o,w) € E} € &. For, suppose not: there is A € F with P(4) > 0
such that u(E,) < 1 for w € A. Then A = {J;2; A, where 4, = {w e
Q : p(E,) < 1-1} € 3§, so there is some n such that P(4,) > 0
since A, is increasing to A if n is increasing. This gives [, u(E,)dP =
S, HEDAP + [y 4. n(B)AP < (1 = 1)P(An) + P(A\ 4y) < P(A)
Hence [ [1pdudP = [, u(E,)dP + [, u(E,)dP < P(A°) + P(A) =
1. A contradiction arises. Therefore if we put F'(w) = E, then the
conclusion follows from Proposition A. O

REMARK. If we assume that for each o € {1,2}N,

Z log E(Cg|n~1,1 + ;ln—1,2)

n=1

converges with an extra condition that

E(Cop-111 Con-12) 21

g

for all n, instead of the condition that for each o € {1, 2},

o0
> 108 E(Cjpoyy + Cojnr)
n=1
converges so fast, we also get the same results in this paper. For, if these
are assumed, then {X,, (o)} forms an L!-bounded submartingale for each
o € {1,2}" with respect to the increasing sequence (§,) of sub-o-fields
of §, hence converges to some random variable X (o) for P-almost all w.

COROLLARY 4. Let pu be any probability measure on {1,2}N.
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If Yy >, log E(Cgln—l,l + Cgln—1,2> converges so fast for each o €
{1,2}N and dimy F(w) > s for P-almost all w € Q, then for P-almost
every w € ) there is F*(w) C F(w) such that dim,(F*(w)) = s where
W(F* () = 1.

Proof. Since for P-almost all w € Q dimg (F(w)) > s, dimy,(F(w)) >
s for P-almost all w € 2. We note that every Borel set in complete
separable metric space has its subset whose packing dimension is less
than or equal to its own packing dimension ([9], [12]). If we put F*(w) =
F'(w)UE(w) where F'(w) is in the proof of Theorem 3 and E(w) C F(w)
is the above subset satisfying dimy,(E(w)) = s, for P-almost every w €
there is F*(w) C F(w) such that dim,(F*(w)) = s with pu(F*(w)) =1
where F'(w) C F*(w) C F(w). a

REMARK. If we loosen some conditions on self-similar random Can-
tor set, we get a generalized definition. If P is a probability measure
on (Q,F) such that C;, and C;2 have the same distribution as L,, and
R, respectively where j € {1,2}""! and L, = C;1, R, = Ci2 and
i € {1} for each n = 1,2,..., and assume that C; are independent
random variables, except C;1 and Cj, for each j, we call F(w) a per-
turbed type random Cantor set ([1]).

In [1], it was shown that the Hausdorff dimension dimg F(w) of F(w)
is s for P-almost all w € Qif Y7 | log F(L$ + RS) converges.

We need an additional condition to the condition that >,° ; log E(L;
+R?) converges in the perturbed type random Cantor set to guarantee
the informations about packing dimension. We require a stronger condi-
tion that [[3, [E(L + R;) —1](2b°)" — 0 as n — oo, which also implies
Yoo log E(LS + R?) converges.

We say that > oo ; log E(LS + R3) converges so fastif [ o, [E(Lf +

$)—1](20°)* - 0asn — oo. If Y7 log E(Lj + RS converges so fast,
we easily see (cf. Lemma 2) that {Xi(o,w)}52, is a martingale in the
limit ([10]) for each o. That is, if a perturbed type random Cantor set
satisfies the condition that > °2 ; log E(L3, + R;,) converges so fast then
the perturbed type random Cantor set is a statistically quasi-self-similar
Cantor set.

COROLLARY 5. Let y be any probability measure on {1,2}Y.

IfY"° , log E(LS+R;,) converges so fast, then for P-almost every w €
2 there is F*(w) C F(w) such that dim,(F*(w)) = s where u(F*(w)) =
1.
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Proof. For P-almost all w € © dimy F(w) = s([1] and above Re-
mark), so by the above Corollary it follows. O

REMARK. We note that there is one to one correspondence between
the probability measure u supported on {1,2}Y and the sequence of
the pOI‘tiOl’l ratios (p¢7p17p27p1,1ap1,2,p2,17p2,27p1,1,1a ce oy Pry- - ) where
pr € (0,1) and 7 € {1,2}™ where n = 0,1,2,... (here we define u(r x
{1} x {1.2}Y) = pru(r x {1,2}N) and u(r x {2} x {1,2}Y) = (1 -
pr)u(T x {1,2}N)). Clearly there is one to one correspondence between
the probability measure p supported on {1, 2}" and the Borel probability
measure u(w) supported on F'(w) where u(w) is a natural measure from
1. Therefore we can identify three of them without confusion henceforth.
In particular, for each w € £ we will call the Borel probability measure
pu(w) supported on F(w) corresponding to the probability measure p
supported on {1,2}N a Borel probability measure on F(w) induced by
. We also note that a probability measure p on ({1,2}Y, ®) where

6‘—‘0’((’51,(’52,...,@5n,...)

with &, = o({r x {1,2}N : 7 € {1,2}"}) is a Borel probability measure
on the coding space {1,2}" with an ultra metric.

LEMMA 6. Let (M, 90, m) be any Borel probability measure space of
probability measures supported on {1,2}", where

M= O’(mhmz,...,mn,...)
with M, = o({B x (0,1)N : B € B((0,1)"™ %)), where B(S) is the
Borel sets of S.
Then E = {(p,w) € M x Q: p{o : limsupy_, o Xp(o,w) < oo} = 1}
is M x F-measurable.

Proof. 1t is not difficult to show that

{(g,w) : p{o : limsup Xi(o,w) < o0} =1}

k—o0

= (N Ul w) : nfo: lim sup X (o, w) < B} 21~ %}.
1=18=1 ~+00
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And we easily see that

{(g,w) : pf{o : lilrcrisupXk(a, w) < B} >~}

= {(mw) : lim ul(V{o: X(o,w) < B} =7}

k>n
= m U{(:u’vw) : M[m{(f : Xk(O’,w) < ﬁ}] >y - %}
h=1n=1 k>n

Therefore
{(g, w) : p{o : limsup Xi(o,w) < 00} =1}
k—o0

[o c IR e S RNe Ol o}

- NU N Ulww) : sl o Xulow) < B} > 1- 3 — -},
[ h

I=1p8=1h=1n=1 k>n

Noting that
{(,w) : [ o : Xi(o,w) < BY] > a}

k>n
= {(w,w): T pf (] {o: Xi(o,w) < )] 2 o}
n<k<p
= (Hww): 4l [ {o: Xilo,w) < B} 2 a},
p=n n<k<p

essentially we only need to show that

{(Maw) : /1'{0 : Xn(O', w) < ﬂ,Xn+1(O',w) < ﬁ} 2 O‘}

is <M x F-measurable.

941

Let T, = {1,2}" and note that X,,(o,w) = X,(¢’,w) where o|n =

o'In. Then
{(/J')w) : “{U : Xn(U’w) < /BaXn+1(UJw) < ﬁ} 2> a}
= U He:m(8) 2 a} x{w: Xu(o,w) < 6,

SCThy1
Xnti(oyw) < B0 € § x {1,2}N,
Xn(al,w) > B,Xn—kl(ojaw) 2B, o € [Tn+1 \S] x {172}N}]
€ ED?n-f-l X 3n+2-
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COROLLARY 7. Let (M,9,m) be any Borel probability measure
space of Borel probability measures on {1,2}N. If 5°°°  log E(C’S|n_1 1+

(2

C;) 1) converges so fast for each o € {1, 2}N then for P-almost ev-

ery w € Q there is F,(w) C F(w) such that dim,(F),(w)) < s where
p(F)(w)) = 1 for m-almost all p € M. Further if we assume an addi-
tional condition that for P-almost all w € Q dimg F(w) > s, then for
P-almost every w € (2 there is F;(w) C F(w) such that dim,(F;(w)) = s
where u(F};(w)) = 1 for m-almost all p € M.

Proof. For every . € M , we see that p{o : limsup,_ . Xi(o,w) <
oo} =1 for P-almost all w € Q2 in the proof of Theorem 3.

Let E = {(p,w) € M x Q: p{o : limsup,_,, Xi(o,w) < 0o} = 1}.
Then E ts M x F-measurable by Lemma 6.

Applying the Fubini theorem, we see that

//1Edem://1EdmdP

Hence we easily see that m(E,) = 1 for P-almost every w where E,, =
{n €M : (pw) € E} €M using the same arguments in the proof of
Theorem 3. Thus for P-almost every w € Q, u{o : limsup,_,,, Xi(o,w)
< oo} =1 m-almost all 4 € M. Say {o : limsupy_,., Xi(o,w) < 0} =
F/(w). Further for P-almost every w, if we consider y € E,, using
the same arguments in the proof of Corollary 4 we see that there is
F;o(ow) C F(w) such tha‘z dim,(F;(w)) = s where p(F;(w)) = 1 and
> one1 108 E(Cy, 4+ Csjn—1,2) converges so fast. O

o

and

LeMMA 8. Let u be a Borel probability measure on a bounded Borel
set E in R. Then R(u) < inf{dim, F : u(F) = 1 for Borel F C E},
where R(p) is the upper Rényi dimension ([5]) of p.

Proof. Assume that ¢t > dim, F' where Borel F' C E with u(F) = 1.
Then limsup, _,; log—‘f(()gB;(ﬂ < dim, F' 1 —a.s. and we can choose a Borel
subset G of F' with p(G) = 1 such that limsup,_,, loﬁfg—g;—(x—)) <t for all
z € G. Put

Gm:{wea;w

1
<tforO<r<—},meN.
log r m
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Using Lemma 4 in [5], we see that R(u) < t+ u(F\ Gy). Since G, 1 G,

R(u) <t. O

COROLLARY 9. Let p be a Borel probability measure on {1,2}N and
Yoo log E(ij_1 ,+C8 ) converges so fast for each o € {1,2}N.

oln—1,2
Then R(u(w)) < s where u(w) is a Borel probability measure on
F(w) induced by p for P-almost all w. Further, P-almost every w € (,
R(u(w)) < s for m-almost all Borel probability measure . € M where
w(w) is a Borel probability measure supported on F(w) induced by p.

Proof. Obvious from Corollary 4, Lemma 8 and Corollary 7. O

REMARK. Let 4 be a Borel probability measure on {1,2}Y.
We note that the upper packing dimension dimy, 1([8]) of measure u
on E can be shown ([8], Proposition 10.3) as

dimy, p = inf{dimy, F' : u(F) = 1 for Borel F C E}.

We also note that dim, u < dimy, u1, where dim,, 44 is the packing dimen-
sion of measure u on E ([8]). Hence in the random Cantor set, where
for each o € {1,2}N, 3°%° | log E(C;|n-—l,1 + C§|n_1’2) converges so fast,
P-almost every w € {2, dimp(u(w)) < dimy(p(w)) < s (See Corollary 7)
for m-almost all Borel probability measure u € M where p(w) is a Borel

probability measure supported on F(w) induced by p.

COROLLARY 10. Let (M,9,m) be any Borel probability measure
space of Borel probability measures on {1,2}N. If % | log E(L$, + R?)
converges so fast, then for P-almost every w € () there is F;(w) C F(w)
such that dimy(F;(w)) = s where u(Fj;(w)) = 1 for m-almost all p €
M.

Proof. Obvious from Corollary 7. O

REMARK. The results in Corollary 5 and 10 are different in the sense
that we fix pu in Corollary 5 and we do w in Corollary 10. Further in
Corollary 5 the p has its own subset of full measure for almost all w and
in Corollary 10 w has its own subset of full measure for almost all u.

REMARK. In fact, in the study of multifractal theory, it is important
to know the upper bounds of the packing dimensions of measures. The
packing dimension of a given fractal is considered as its upper bound.
But using above facts, we can find its upper bound even though the
packing dimension of the perturbed type random Cantor set is still un-
known.
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That is, P-almost every w € Q, dimy(u(w)) < dimy(u(w)) < s for
m-almost all Borel probability measure p € M where p(w) is a Borel
probability measure supported on F(w) induced by p.

Here we note that statistically self-similar Cantor set has packing
dimension s ([7], {11]), hence dimpy(u(w)) < dimy(u(w)) < s for all
Borel probability measure u € M for P-almost every w € €2, which
is a stronger result than ours but still restrictive, not to control the
statistically quasi-self-similar Cantor set.
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