Involvement of Nitric Oxide During In Vitro Fertilization and Early Embryonic Development in Mice

  • Kim, Bo-Hyun (Eden Obstetric & Gynecology Clinic) ;
  • Kim, Chang-Hong (Eden Obstetric & Gynecology Clinic) ;
  • Jung, Kyu-Young (Department of Pharmacology, Wonkwang University School of Medicine) ;
  • Jeon, Byung-Hun (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Ju, Eun-Jin (Department of Biological science, College of Natural Sciences and Medicinal Resources Research Center, Wonkwang University) ;
  • Choo, Young-Kug (Department of Biological science, College of Natural Sciences and Medicinal Resources Research Center, Wonkwang University)
  • Published : 2004.01.01

Abstract

Nitric oxide (NO) has emerged as an important intracellular and intercellular messenger, controlling many physiological processes and participating in the fertilization process via the autocrine and paracrine mechanisms. This study investigated whether nitric oxide synthase (NOS) inhibitior (L-NAME) and L-arginine could regulate in vitro fertilization and early embryonic development in mice. Mouse epididymal spermatozoa, oocytes, and embryos were incubated in mediums of variable conditions with and without L-NAME or L-arginine (0.5, 1, 5 and 10mM). Fertilization rate and early embryonic development were significantly inhibited by treating sperms or oocytes with L-NAME (93.8% vs 66.3%,92.1% vs 60.3%), but not with L-arginine. In contrast, fertilization rate and early embryonic development were conspicuously reduced when L-NAME or L-arginine was added to the culture media for embryos. Early embryonic development was inhibited by microinjection of L-NAME into the fertilized embryosin a dose-dependent manner, but only by high concentrations of L-arginine. These results suggest that a moderate amount of NO production is essential for fertilization and early embryo development in mice.

Keywords

References

  1. Adams, M. L., Nock, B., Trung, R., and Cicero, T. J., Nitric oxide control of steroidogenesis: endocrine effects of $N^{G}$-nitro-L-arginine and comparisons to alcohol. Life. Sci., 50, PL35-40 (1992) https://doi.org/10.1016/0024-3205(92)90384-2
  2. Barroso, R. P., Osuamkpe, C., Nagamani, M., and Yallampalli, C., Nitric oxide inhibits development of embryos and implantation in mice. Mol. Hum. Reprod., 4, 503-507 (1998) https://doi.org/10.1093/molehr/4.5.503
  3. Biswas, S., Kabir, S., and Pal, A. K., The role of nitric oxide in the process of implantation in rats. J. Reprod. Fertil., 114, 157-161 (1998) https://doi.org/10.1530/jrf.0.1140157
  4. Baldi, E., Luconi, M., Bonaccorsi, L., Krausz, C., and Forti, G., Human sperm activation during capacitation and acrosome reaction: role of calcium, protein phosphorylation and lipid remodelling pathways. Front. Biosci., 1, d189-205 (1996) https://doi.org/10.2741/A125
  5. Burnett, A. L., Ricker, D. D., Chamness, S. L., Maguire, M. P., Crone, J. K., Bredt, D. S., Snyder, S. H., and Chang, T. S., Localization of nitric oxide synthase in the reproductive organs of the male rat. Biol. Reprod., 52, 1-7 (1995) https://doi.org/10.1095/biolreprod52.1.1
  6. Bredt, D. S. and Synder, S. H., Nitric oxide mediates gultamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. USA, 86, 9030-9033 (1989) https://doi.org/10.1073/pnas.86.22.9030
  7. Choi, H. G., Kim, J. K., Cho, J. R., Kim, B. J., Jung, K. Y., Choi, B. K., Shin, M. K., and Choo. Y. K., Effects of high molecular weight water-soluble chitosan on in vitro fertilization and ovulation in mice fed a high-fat diet. Arch. Pharm. Res., 25, 178-183 (2002) https://doi.org/10.1007/BF02976560
  8. Chen, H. W., Jiang, W. S., and Tzeng, C. R., Nitric oxide as a regulator in preimplantation embryo development and apoptosis. Fertil. Steril., 75,1163-1171 (2001) https://doi.org/10.1016/S0015-0282(01)01780-0
  9. Dey, S. K., Kimura, F., Mukherjee, F., and Dickmann, Z. J., Cyclic-AMP and cyclic-GMP in rabbit blastocysts. Reprod. Fertil., 52, 235-237 (1978) https://doi.org/10.1530/jrf.0.0520235
  10. Gagiot, S., Scavone, C., and Bevilacqua, E., Participation of the mouse implanting trophoblast in nitric oxide production during pregnancy. Biol. Reprod., 62, 260-268 (2000) https://doi.org/10.1095/biolreprod62.2.260
  11. Gouge, R. C., Marshburn, P., Gordon, B. E., Nunley, w., and Huet-Hudson, Y. M., Nitric oxide as a regulator of embryonic development. Biol. Reprod., 58, 875-879 (1998) https://doi.org/10.1095/biolreprod58.4.875
  12. Garthwait, J., Charles, J, S., and Chess-Williams, R., Endothelium-derived relaxing factor release on activation of NMDA receptors suggests roles as intracellular messenger in the brain. Nature. London, 336, 385-388 (1988) https://doi.org/10.1038/336385a0
  13. Herrero, M. B., Goin, J. C., Boquet, M., Canteros, M. G., Franchi, A. M., Perez Martinez, S., Polak, J. M., Viggiano, J. M., and de Gimeno, M. A. F., The nitric oxide synthase of mouse spermatozoa. FEBS. Lett., 411, 39-42 (1997) https://doi.org/10.1016/S0014-5793(97)00570-X
  14. Herrero, M. B., Viggiano, J. M., Perez Martinez, S., and de Gimeno, M. A. F., Effects of nitric oxide synthase inhibitors on the outcome of in vitro fertilization in the mouse. Reprod. Fertil. Dev., 8, 301-314 (1996a) https://doi.org/10.1071/RD9960301
  15. Herrero, M. B., Perez Martinez, S., Viggiano, J. M., Polak, J. M., and de Gimeno, M. F., Localization by indirect immunofluorescence of nitric oxide synthase in mouse and human spermatozoa. Reprod. Fertil. Dev., 8, 931-934 (1996b)
  16. Hellstrom, W. J. G., Bell, M., Wang. R., and Sikka, S. C., Effect of sodium nitroprusside on sperm motility, viability, and lipid peroxidation. Fertil. Steril., 61,1117-1122 (1994) https://doi.org/10.1016/S0015-0282(16)56766-1
  17. Hubbard, C. J. and Price, J., The effects of follicle-stimulating hormone and cyclic guanosine 3', 5'-monophosphate and cyclic adenosine 3', 5'-monophosphate-phosphodiesterase and resumption of meiosis in hamster cumulus-oocyte complexes. Biol. Reprod., 39,829-838 (1988) https://doi.org/10.1095/biolreprod39.4.829
  18. Hibbs, J. B., Taintor, Jr. R. R., and Vavrin, Z., Macrophage cytotoxicity: role for L-arginine deminase and imino nitrogen oxidation to nitrite. Science. Wash. DC., 325, 473-476 (1987)
  19. Izumi, Y., Clifford, D. B., and Zorumski, C. F., Inhibition of longterm potentiation by NMDA-mediated nitric oxide release. Science. Wash. DC., 257,1273-1276 (1992) https://doi.org/10.1126/science.1519065
  20. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., and Chaudhuri, G., Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA, 84, 9265-9269 (1987) https://doi.org/10.1073/pnas.84.24.9265
  21. Jung, K. Y., Kim, B. H., Hwang, M. R., Cho, J. R., Kim, H. M., Lee, Y. C., Kim, C. H., Kim, J. K., and Choo, Y. K., Differential distribution of ganglioside GM3 in seminiferous tubule and epididymis of adult rats. Arch. Pharm. Res., 24, 360-366 (2001) https://doi.org/10.1007/BF02975107
  22. Kwak, D. H., Jung, K. Y., Lee, Y. C., and Choo, Y. K., Expressional changes of ganglioside GM3 during ovarian maturation and early development in db/db mice. Develop. Growth. Differ., 45, 95-102 (2003) https://doi.org/10.1046/j.1440-169X.2003.00678.x
  23. Kuo, R. C., Baxter, G. T., Thompson, S. H., Stricker, S. A., Patton, C., Bonaventura, J., and Epel, D., NO is necessary and sufficient for egg activation at fertilization. Nature, 406, 633-636 (2000) https://doi.org/10.1038/35020577
  24. Lewis, S. E. M., Donnelly, E. T., Sterling, E. S. L., Kennedy, M. S., Thompson, W., and Chakravarthy, U., Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility. Mol. Hum. Reprod., 2, 873-878 (1996) https://doi.org/10.1093/molehr/2.11.873
  25. Moncada, S., Palmer, R. M. J., and Higgs, E. A., Nitric oxide: physiology, pathophysiology and pharmacology. Pharmcol. Rev., 43, 109-142 (1991)
  26. Nobunaga, T., Takugawa, Y., Hashimoto, K., Kubota, Y., Sawai, K., and Kimura, T., Elevated nitric oxide concentration in the seminal plasma of infertile males: nitric oxide inhibits sperm motility. Am. J. Rep. Immunol., 36, 197-197 (1996)
  27. Nathan, C., Nitric oxide as a secretory product of mammalian cells. FASEB J., 6, 3051-3064 (1992) https://doi.org/10.1096/fasebj.6.12.1381691
  28. Oh, S. H., Miyoshi, K., and Funahashi, H., Rat oocytes fertilized in modified rat 1-cell embryo culture medium containing a high sodium chloride concentration and bovine serum albumin maintain developmental ability to the blastocyst stage. Biol. Reprod., 59, 884-889 (1998) https://doi.org/10.1095/biolreprod59.4.884
  29. O'Bryan, M. K., Zini, A., Cheng, G. Y., and Schlegel, P. N., Human sperm endothelial nitric oxide synthase expression: correlation with sperm motility. Fertil. Steril., 70, 1143-1147 (1998) https://doi.org/10.1016/S0015-0282(98)00382-3
  30. Revelli, A., Soldati, G., Costamagna, C., Pellerey,O., Aldieri, E., Massobrio, M., Bosia, A., and Ghigo, D., Follicular fluid proteins stimulate nitric oxide (NO) synthase in human sperm: a possible role for NO in acrosomal reaction. J. Cell Physiol., 178, 85-92 (1999) https://doi.org/10.1002/(SICI)1097-4652(199901)178:1<85::AID-JCP11>3.0.CO;2-Y
  31. Rosselli, M., Dubey, R. K., Imthurn, B., Macas, E., and Keller, P., Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decrease sperm motility and induces sperm toxicity. Hum. Reprod., 10, 1786-1790 (1995) https://doi.org/10.1093/oxfordjournals.humrep.a136174
  32. Sladex, S. M., Magness, R. R., and Conrad, K. P., Nitric oxide and pregnancy. Am. J. Physiol., 272, R441-R463 (1997)
  33. Sladek, S. M., Regenstein, A. C., Lykins, D., and Roberts, J. M., Nitric oxide synthase activity in pregnant rabbit uterus decreases on the last day of pregnancy. Am. J. Obstet. Gynecol., 160, 1285-1291 (1993)
  34. Schmidt, H. H. H. W., Lohmann, S. M., and Walter, U., The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim. Biophys. Acta, 1178, 153-175 (1993) https://doi.org/10.1016/0167-4889(93)90006-B
  35. Toyoda, Y. and Chang, M. C., Fertilization of rat eggs in vitro by epididymal spermatozoa and the development of eggs following transfer. J. Reprod. Fertil., 36, 9-22 (1974) https://doi.org/10.1530/jrf.0.0360009
  36. Weinberg, J. B., Doty, E., Bonaventura, J., and Haney, A. F., Nitric oxide inhibition of human sperm motility. Fertil. Steril., 62,1244-1249 (1995)
  37. Yeoman, R. R., Jones, W. D., and Rizk, B. M., Evidence for nitric oxide regulation of hamster sperm hyperactivation. J. Androl., 1, 58-64 (1998)
  38. Zini, A., Lamirande, E. D., and Gagnon, C., Low levels of nitric oxide promote human sperm capacitation in vitro. J. Androl., 16, 424-431 (1995)