Elliptic Curve Scalar Point Multiplication Using Radix-4 Modified Booth's Algorithm

Radix-4 Modified Booth's 알고리즘을 응용한 타원곡선 스칼라 곱셈

  • 문상국 (목원대학교 정보전자영상공학부)
  • Published : 2004.10.01

Abstract

The main back-bone operation in elliptic curve cryptosystems is scalar point multiplication. The most frequently used method implementing the scalar point multiplication, which is performed in the upper level of GF multiplication and GF division, has been the double-and-add algorithm, which is recently challenged by NAF(Non-Adjacent Format) algorithm. In this paper, we propose a more efficient and novel scalar multiplication method than existing double-and-add by applying redundant receding which originates from radix-4 Booth's algorithm. After deriving the novel quad-and-add algorithm, we created a new operation, named point quadruple, and verified with real application calculation to utilize it. Derived numerical expressions were verified using both C programs and HDL (Hardware Description Language) in real applications. Proposed method of elliptic curve scalar point multiplication can be utilized in many elliptic curve security applications for handling efficient and fast calculations.

타원곡선 암호시스템에서의 가장 큰 뼈대가 되는 연산은 스칼라 곱셈 연산이다. 이러한 타원 곡선유한체 내에서 유한체 곱셈과 유한체 나눗셈보다 한 계층 상위의 개념에서 수행되는 스칼라 곱셈의 구현은 주로 두배점-덧셈(double-and-add)이라는 방식이 많이 쓰였고 〔1, 최근에는 NAF(Non Adjacent Format) 〔2〕 알고리즘이 제안되었다. 본 논문에서는 radix4 Booth's 알고리즘을 응용하여 기존 방식보다 한 단계 더 효율적인 스칼라 곱셈 알고리즘을 제안하였다 기존의 double-and-add 알고리즘으로 처리하였던 스칼라 곱셈 방식을 개선한 새로운 네배점-덧셈(quad-and-add) 알고리즘을 유도한 다음, 이를 사용하기 위하여 새로운 네배점(point quadruple; quad( )) 연산을 유도하고 증명하였다. 유도한 수식들은 C 프로그램과 HDL을 사용하여 실제 계산에 응용하여 증명하였다. 제안된 타원곡선 스칼라 곱셈 방식은 타원곡선 암호시스템 응용 분야의 효율적이고 빠른 연산을 처리하는데 적용할 수 있다.

Keywords

References

  1. http://www.certicom.com
  2. D. Hankerson, J. L. Hernandez, and A. Menezes, 'Software Implementation of Elliptic Curve Cryptography over Binary Fields,' Crypto95, 1995
  3. http://www.its.bldrdoc.gov/fs-1037/dir-017/_2530.htm
  4. I. Koren, Computer Arithmetic Algorithms, Chapter 6, Prentice Hall International, pp. 99-106, 1993
  5. A. D. Booth, 'A Signed Binary Multiplication Algorithm,' Quart. J. Mech. Appl.. Math., Vol. 4, Pt. 2, pp. 236-240, 1951 https://doi.org/10.1093/qjmam/4.2.236
  6. K. Hwang, Computer Arithmetic, John Wiley & Sons, 1979
  7. L. P. Rubinfield. 'A Proof of the Modified Booth's Algorithm for Multiplication,' IEEE Transactions on Computers, Vol. C-24, No. 10, pp. 1014-1015, Oct. 1975 https://doi.org/10.1109/T-C.1975.224114
  8. 문상국, '타원 곡선 암호용 프로세서를 위한 고속 VLSI 알고리즘의 연구와 구현,' 연세대학교 대학원 박사학위논문집, 2002
  9. G. Orlando, C. Paar, 'A Super-Serial Galois Fields Multiplier for FPGAs and its Application to Public-Key Algorithms,' Proceedings of 7th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 232-239, 1999
  10. 최용제, 김호원, 김무섭, 박영수, 'IC카드를 위한 polynomal 기반의 타원 곡선 암호시스템 연산기 설계,' 2001년도 대한전자공학회 하계종합학술대회 논문지 제 24권 제 1호, pp. 305-308, 2001