DOI QR코드

DOI QR Code

Anti-proliferative Effects of Water Extract of Agaricus blazei Murill in Human Lung Cancer Cell Line A549

A549 인체폐암세포의 증식에 미치는 신령버섯 추출물의 영향에 관한 연구

  • 최우영 (동의대학교 한의과대학 생화학교실, 부산대학교 생물학과) ;
  • 박철 (동의대학교 한의과대학 생화학교실) ;
  • 이재윤 ((주)청원농산) ;
  • 김기영 (부산대학교 의과대학 미생물학 및 면역학교실) ;
  • 박영민 (부산대학교 의과대학 미생물학 및 면역학교실) ;
  • 정영기 (동의대학교 미생물학과) ;
  • 이원호 (부산대학교 생물학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실)
  • Published : 2004.10.01

Abstract

Agaricus blazei Murill is a medicinal mushroom native to Brazil. It used to be a source of antitumor and immunoactive compounds and considered a health food in many countries. In the present study, it was examined the effects of water extract of A. blazei (WEAB) on the growth of human lung carcinoma cell line A549 in order to investigate the anti-proliferative mechanism by WEAB. Treatment of A549 cells to WEAB resulted in the growth inhibition, morphological change and induction of apoptotic cell death in a dose-dependent manner as measured by MTT assay and flow cytometric analysis. Flow cytometric analysis revealed that WEAB caused G2/M phase arrest of the cell cycle, which was associated with a down-regulation of cyclin A in both transcriptional and translational levels. WEAB treatment induced a marked up-regulation of cyclin-dependent kinase (Cdk) inhibitor p21, however, the levels of Cdk2, Cdc2, Wee1, Cdc25C and p53 expression were remained unchanged in WEAB treated cells. In addition, WEAB treatment inhibited the levels of cyclooxygenase (COX)-2 mRNA and protein without alteration of COX-l expression. Taken together, these findings suggest that WEAB may be a potential chemotherapeutic agent for the control of human lung carcinorma cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of WEAB. Once such compounds are identified, the mechanisms by which they exert their effects can begin to be characterized.

브라질 기원인 신령 버섯 (A. blazei murill)은 강력한 항암 및 면역강화 작용을 가진 것으로 알려져 있다. 본 연구에서는 신령버섯 수용성 추출물(water extracted A. blazei Murill, WEAB)이 A549 인체 폐암세포 증식에 미치는 영향을 조사하였으며, 증식억제와 연관된 기전 해석을 시도하였다. WEAB가 처리된 A549 세포는 처리 농도 의존적으로 생존율이 감소되었으며, WEAB 처리는 암세포의 다양한 형태적 변형을 유발하였다. Flow cytometry 분석 결과로서 WEAB 처리에 의한 A549 폐암세포의 증식억제는 세포주기 G2/M arrest 및 apoptosis 유발과 직접적으로 연관성이 있음을 알 수 있었다. WEAB가 처리된 암세포에서 전사 및 번역 수준에서 cyclin A 발현의 감소 및 Cdk inhibitor p21 발현의 증가 현상이 관찰되었으나, cyclin B1, Cdk2, Cdc2, Wee1, Cdc25c 및 p53 등의 발현에는 큰 변화가 관찰되지 못하였다. 또한 WEAB의 처리는 COX-2 선택적 발현 저하를 유발하였으나, telomere 조절 관련 유전자들의 발현에는 큰 영향을 주지 못하였다. 이상의 결과는 신령버섯 추출물이 강력한 항암 및 암 예방 효능의 잠재력을 가지고 있음을 의미하며, 이에 관한 지속적인 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Ito H, Shimura H, Itoh M, Kaurode M. 1997. Antitumour effects of a new polysaccharideprotein complex (ATOM) prepared from Agaricus blazei (Iwade Strain 101) Himem atsuke and its mechanisms in tumour-beairng mice. Anticancer Res 17: 277-284.
  2. Ebina T, Fujimiya Y. 1998. Agaricus blazei. Biotherapy 11: 259-265. https://doi.org/10.1023/A:1008054111445
  3. Mizuno TK. 1995. Bioactive biomolecules of mushrooms. food, function and medicinal effect of mushroom fungi. Food Rev Int 11: 7-21.
  4. Mizuno TK. 1995. Agaricus blazei Murill: medicinal and dietary effects. Food Rev Int 11: 167-172. https://doi.org/10.1080/87559129509541026
  5. Kuo YC, Huang YL, Chen CC, Lin YS, Chuang KA, Tsai WJ. 2002. Cell cycle progression and cytokine gene expresssion of human peripheral blood mononuclear cells modulated by Agaricus blazei. Natl Res Inst Chin Med 155: 176- 187.
  6. Takaku T, Kimura Y, Okuda H. 2001. Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. J Nutr 131: 1409-1413. https://doi.org/10.1093/jn/131.5.1409
  7. Guterrez ZR, Mantovani MS, Eira AF, Ribeiro LR, Jordao BQ. 2004. Variation of the antimutagenicity effects of water extracts of Agricus blazei Murill in vitro. Toxicol In Vitro 18: 301-309. https://doi.org/10.1016/j.tiv.2003.09.003
  8. Bellini MF, Giacomini NL, Eira AF, Ribeiro LR, Mantovani MS. 2003. Anticlastogenic effect of aqueous extracts of Agaricus blazei on CHO-k1 cells, studying different developmental phases of the mushroom. Toxicol In Vitro 17: 465-469. https://doi.org/10.1016/S0887-2333(03)00043-2
  9. Martins de Oliveira J, Jordao BQ, Ribeiro LR, Ferreira da Eira A, Mantovani MS. 2002. Anti-genotoxic effect of aqueous extracts of sun mushroom (Agaricus blazei Murill lineage 99/26) in mammalian cells in vitro. Food Chem Toxicol 40: 1775-1780 https://doi.org/10.1016/S0278-6915(02)00156-4
  10. Sherr CJ. 2000. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60: 3689-3695
  11. Weinberg RA. 1995. The retinoblastoma protein and cell cycle control. Cell 81: 323-330 https://doi.org/10.1016/0092-8674(95)90385-2
  12. Howard A, Pelc SR. 1953. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity 6: 261
  13. Minshull J, Pines J, Golsteyn R, Standart N, Mackie S, Colman A, Blow J, Ruderman JV, Wu M, Hunt T. 1989. The role of cyclin synthesis, modification and destruction in the control of cell division. J Cell Sci 12 (Suppl): 77-97
  14. Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY. 1994. D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14: 2066-2076 https://doi.org/10.1128/MCB.14.3.2066
  15. Meyerson M, Harlow E. 1994. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 14: 2077-2086 https://doi.org/10.1128/MCB.14.3.2077
  16. Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledg S, Nishimoto T, Morgan DO, Franza BR, Roberts JM. 1992. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257: 1689-1694 https://doi.org/10.1126/science.1388288
  17. Ohtsudo M, Roberts JM. 1993. Cyclin-dependent regulation of G1 in mammlian fibroblasts. Science 259: 1908-1912. https://doi.org/10.1126/science.8384376
  18. Elledge SJ, Harper JW. 1994. Cdk inhibitors: on the threshold of checkpoints and development. Curr Opin Cell Biol 6: 847-852 https://doi.org/10.1016/0955-0674(94)90055-8
  19. Morgan DO. 1995. Principles of CDK regulation. Nature 374: 131-134 https://doi.org/10.1038/374131a0
  20. Gu Y, Truck CW, Morgan DO. 1993. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366: 707-710 https://doi.org/10.1038/366707a0
  21. Harper JW. 1997. Cyclin dependent kinase inhibitors. Cancer Surv 29: 91-107
  22. Girard F, Strausfeld U, Fernandez A, Lamb NJ. 1991. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67: 1169-1179 https://doi.org/10.1016/0092-8674(91)90293-8
  23. Guadagno TM, Ohtsubo M, Roberts JM, Assoian RK. 1993. A link between cyclin A expression and adhesion-dependent cell cycle progression. Science 262: 1572-1575 https://doi.org/10.1126/science.8248807
  24. Bulavin DV, Amundson SA, Fornace AJ. 2002. p38 and Chk1 kinases: different conductors for the G(2)/M checkpoint symphony. Curr Opin Genet Dev 12: 92-97 https://doi.org/10.1016/S0959-437X(01)00270-2
  25. Li Y, Jenkins CW, Nichols MA, Xiong Y. 1994. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9: 2261-2268
  26. Taylor WR, Stark GR. 2001. Regulation of the G2/M transition by p53. Oncogene 20: 1803-1815 https://doi.org/10.1038/sj.onc.1204252
  27. Datto MB, Yu Y, Wang XF. 1995. Functional analysis of the transforming growth factor $\beta$ responsive elements in the WAF1/Cip1/p21 promoter. J Biol Chem 270: 28623-28628 https://doi.org/10.1074/jbc.270.48.28623
  28. Jiang H, Lin J, Su ZZ, Collart FR, Huberman E, Fisher PB. 1994. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 9: 3397-3406
  29. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366: 701-704 https://doi.org/10.1038/366701a0
  30. Zeng YX, El-Deiry WS. 1996. Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 12: 1557-1564
  31. Choi YH, Lee WH, Park KY, Zhang L. 2000. p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn J Cancer Res 91: 164-173 https://doi.org/10.1111/j.1349-7006.2000.tb00928.x
  32. Dulic V, Stein GH, Far DF, Reed SI. 1998. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol 18: 546-557 https://doi.org/10.1128/MCB.18.1.546
  33. Tchou WW, Rom WN, Tchou-Wong KM. 1996. Novel form of p21 (WAF1/CIP1/SDI1) protein in phorbol ester-induced G2/M arrest. J Biol Chem 271: 29556-29560 https://doi.org/10.1074/jbc.271.47.29556
  34. Musgrove EA, Davison EA, Ormandy CJ. 2004. Role of the CDK Inhibitor p27 (Kip1) in mammary development and carcinogenesis: Insights from knockout mice. J Mammary Gland Biol Neoplasia 9: 55-66 https://doi.org/10.1023/B:JOMG.0000023588.55733.84
  35. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480-481: 243-268 https://doi.org/10.1016/S0027-5107(01)00183-X
  36. Wang D, Dubois RN. 2004. Cyclooxygenase-2: a potential target in breast cancer. Semin Oncol 31: 64-73
  37. Yang C, Stephen MP. 2002. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol 190: 279-286 https://doi.org/10.1002/jcp.10068
  38. Mathieu N, Pirzio L, Freulet-Marriere MA, Desmaze C, Sabatier L. 2004. Telomeres and chromosomal instability. Cell Mol Life Sci 61: 641-656 https://doi.org/10.1007/s00018-003-3296-0
  39. Rezler EM, Bearss DJ, Hurley LH. 2002. Telomeres and telomerases as drug targets. Curr Opin Pharmacol 2: 415-423 https://doi.org/10.1016/S1471-4892(02)00182-0
  40. Cong YS, Wright WE, Shay JW. 2002. Human telomerase and its regulation. Microbiol Mol Biol Rev 66: 407-425 https://doi.org/10.1128/MMBR.66.3.407-425.2002
  41. Homayoun V, Sam B. 1996. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: The telomere loss/DNA damage model of cell aging. Exp Gerontol 31: 295-301 https://doi.org/10.1016/0531-5565(95)02025-X
  42. Horikawa I, Barrett JC. 2003. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 24: 1167-1176 https://doi.org/10.1093/carcin/bgg085

Cited by

  1. Effects of Agaricus blazei Murill Water Extract on Immune Response in BALB/c Mice vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1629
  2. Anti-carcinogenic actions of glycoprotein conjugated with isoflavones from submerged-liquid culture of Agaricus blazei mycelia through reciprocal expression of Bcl-2 and Bax proteins vol.15, pp.4, 2014, https://doi.org/10.12729/jbr.2014.15.4.200
  3. 고콜레스테롤 식이의 급여에 의해 고지혈증이 유도된 흰쥐의 신령버섯 자실체의 항고지혈증 효과 vol.16, pp.2, 2004, https://doi.org/10.14480/jm.2018.16.2.118