PILOT LNG 저장탱크의 화재안전성 평가에 관한 연구

Study on the Fire Safety Estimation for a Pilot LNG Storage Tank

고재선† · 김효

Jae-Sun Ko† · Kim Hyo

서울시립대학교 화학공학과
(2004. 7. 5. 접수/2004. 9. 6. 채택)

요 약

Pilot LNG Tank에서 LNG가 누출되어 화재가 발생할 경우의 정량적 안전성 평가를 고려수학법을 이용하여 4가지 형태의 주요 사나리오를 도출하고 이에 대한 분석을 수행하였다. 첫째 방출관에서 누출할 경우에 특정 Low Flammable Limit(LFL)반경은 형성하지 않았으며, 둘째는 텔레파르소로 인한 LNG 유출이라는 취약의 사나리오 분석을 수행하였고, 그 결과를 살펴보면 충 LNG가 용 lượng이 급격히 더 시간에 따라 여러 가지 확산범위가 나타날 수 있다. 셋째는 inlet/outletайте프의 손상으로 인한 농축로 10분과 60분 두 경우에 대해 분석하였으나, 각각의 경우 LFL의 반경은 큰 차이를 보이지 않았다. 따라서, 이와 같은 LNG농축 사고의 경우 초기 방출량의 크기가 확산의 주요 인자임을 알 수 있었다. 넷째는 방류폭에서 LNG 배관이 파손될 경우 LFL의 크기를 산출하였다. 한편 폭발적 및 불꽃의 크기에 대한 피해구분을 동시에 수행하였다.

ABSTRACT

Quantitative safety analysis through a fault tree method has been conducted for a fire broken out over the spilling LNG from a pilot LNG tank, which may have 4 types of scenarios causing potentially risky results. When we consider LNG release from venting pipelines as a first event, any specific radius of Low Flammable Limit(LFL) has not been built up. The second case of LNG outflow from the rupture of storage tank which will be the severest has been analyzed and the results revealed various diffusion areas to the leaking times even with the same amount of LNG release. As a third case LNG leakage from the inlet/outlet pipelines was taken into consider. The results showed no significant differences of LFL radii between the two spilling times of 10 and 60 minutes. Hence, we have known the most affecting factor on the third scenario is an initial amount of LNG release. Finally, the extent of LFL was calculated when LNG pipelines around the dike area were damaged. In addition, consequence analysis has been also performed to acquire the heat radiation and flame magnitude for each case.

Keywords : Pilot LNG Storage Tank, Vapor Cloud Explosion, Pool Fire, Minimal Cut Set, Fussel-Vesely, Risk Achievement Worth, Risk Reduction Worth

1. 서 론

LNG와 같이 위험성이 큰 물질을 처리하는 실험용 설비인 Pilot LNG 저장시설의 설계시에는 특히 안전을 고려한 설계가 중요하다. 해외 선진국에서는 각종 안전기준 및 표준을 정립하여 이를 바탕으로 LNG플랜트를 설계하고 있고, 더욱이 가상 사고에 따른 화재 또는 폭발

† E-mail: 119kjs@hanmail.net
실과의 연계측면에서 효율적인 운영 및 안전성의 확보를 추구하는데 그 목적이 있다. 세부적인 연구의 내용 및 범위는 첫째 Pilot Facility 안전평가를 위한 기본 조사로서 시스템 설계를 위한 안전표준 및 기술기준 조사인 체인가스 사설의 설계를 위한 안전관련 코드 및 기술기준인 NFPA 59A와 EN 1473을 분할별로 정리하였고, 고장 및 사고 데이터 수집 및 분석으로서 LNG시설설의 사고, 고장사항을 수집하기 위해서 ESREDA (European Safety Reliability and Data Association)에서 발간한 데이터베이스 목록인 “Directory of Accident Database”를 조사하였다. ESREDA에 수록된 데이터베이스 중 LNG와 관련된 사고를 포함하고 있을 것으로 판단되는 데이터베이스를 파악하였고(CCINFO, EIDAS, MHIDAS, FACTS), 롯데 고압가스안전관리법 제 13조의 2 제 4항 및 동법 시행령 제 10조 1항 제 5호와 도시 가스사업법 제 27조의 2 제 4항 및 동법 시행령 제 7조의 2 제 5호의 규정에 의하여 Pilot LNG 저장설비를 대상으로 위험성 및 조업성(HAZOP : Hazard nd Operability) 분석기법을 적용하여 안전성평가를 수행하였다. 셋째 설계계산단계에서의 안전성평가로서 기본설계계산에서 수행한 HAZOP 분석결과를 토대로 설계계산 내용을 전면 반영하여 사고시나리오의 발생빈도와 사고발생시의 사고여부를 정량적으로 분석하였다. 설계계산이 진행되면서 기본 세부적 설계내용을 반영하여 사고시나리오를 도출하고 이에 따라 고장수급을 수행하였다. 이와 병행하여 사고에 의한 LNG 또는 NG 누출시 확산 분석과 화재발생시의 복사열 계산 등 사고방향분석을 수행하였다.

2. Pilot LNG Storage Plant 설명

2.1 공정개요

Pilot Plant는 기존 생산기지와 연결되며, 두 단계로 나누어 설계되며. 첫 번째 단계에서는 1000 m³용량의 밸브레인 저장탱크 1기에 2대의 저장탱크로 구성되며, 두 번째 단계에서는 증발가스흡입기, 재작환기, 고압펌프 및 가방기고가 설치될 예정이다. 유하여리 설비는 절소 및 공기공급 설비가 있고, 다른 유하여리기는 기존 생산기지에서 공급받도록 되어 있다.

2.3 공정설명

Pilot Plant는 기존 생산기지와 연결되며, 총 7가지 공정단으로 구분할 수 있고 그것을 정리한 것이 Table 2이다. 살펴보면 먼저 LNG처분으로서 하역한 현대인 드럼으로 드레인하는 8” 배관에서 연결하여 Pilot Plant로 LNG를 충전한다. 생산기지에서 하역을 하지 않을 때는 하역배관에 LNG순환운전을 하고 있으며 이때 에도 Pilot Plant로 LNG를 충전할 수 있다. 둘째 저장탱크부분으로 저장용량이 1000 m³인 밸브레인형 탱크 1기가 설치되고, 탱크하부부와 하량대지 사이에 공기 출(Coil Gap)이 존재하므로 당의 동결방지를 위한 가장마지(Heat Tracing)가 필요 없다. 셋째 LNG송출부분으로 저장탱크를 이용하여 Pilot Plant에서 기존 생산기지 저장탱크로 송출할 수 있도록 구성되어 있다. 넷째 증발가스 처리로 저장탱크에서 발생되는 증발 가스는 기존 생산기지 증발가스 해더로 보내져 처리된다. 높이가 증발가스 가압저력보다 낮을 때에는 연결배관은 분리되고, 발생하는 증발 가스는 압력조절밸브에 의하여 소각하더로 처리된다. 다섯째 LNG 드레이인으로 저장탱크 및 LNG충전배관, 기타배관의 LNG는 기존 생산기지 하역래인 드레이인으로 연료가스나 절소를 이용하여 이용하는 방식으로 처리한다. 여섯째 제기공기 공급 및 절소설비로서 Pilot Plant에서 사용되는 제기공기 공급은 절소는 자체설비를 설치하여 운영하며 비상시 기존 생산기지에서 공급할 수 있도록 연결된다. 마찬가지로 기타 유하여리로서 제기공기와 절소를 제외한 각종 유하여리는 기존 생산기지에서 공급받아 사용되며, 기존 생산기지와 Pilot Plant 사이의 LNG 및 NG

<table>
<thead>
<tr>
<th>Process</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling flow</td>
<td>Normal Nm³/h, Max 150 Nm³/h</td>
</tr>
<tr>
<td>Send-out flow</td>
<td>Max 75 Nm³/h</td>
</tr>
<tr>
<td>Amount of evaporation Gas</td>
<td>Normal 500 kg/h, Design Criteria 1,200 kg/h</td>
</tr>
<tr>
<td>Rate of Incineration</td>
<td>Design Criteria 2,650 kg/h</td>
</tr>
<tr>
<td>Storage Tank Pressure</td>
<td>Normal 150 mbarg, Max 350 mbarg, Design Criteria 450 mbarg</td>
</tr>
<tr>
<td>Rare of Evaporation</td>
<td>0.5% per day</td>
</tr>
</tbody>
</table>

Table 1. Process conditions of pilot LNG storage tank

한국화재소방학회 논문지, 제18권 제3호, 2004년
Table 2. Description of process facilities for pilot LNG storage

<table>
<thead>
<tr>
<th>Process Facilities</th>
<th>Contents</th>
</tr>
</thead>
</table>
| LNG Filling | 1. From the drain drum to pilot plant with 8” cargo pipe.
2. Two process conditions at battery limit.
 - cargo : 3.67 kg/cm²g, Recycling : 10.5 kg/cm²g
3. Cargo to the top side of tank, and to the upper and the down inside pipes.
 - Upper side : Spray Device / Splash Plate, Down side : Stand-pipe. |
| Pilot LNG Tank | 1. Storage capacity : 1000 m³ membrane-type tank 1 ea
2. Low pressure pump : 2 ea of capacity 50 m³/h.
3. designed pressure : 450 mbarg,
4. Evaporator rate : 0.5 v%/day. |
| LNG Send-out | 1. From pilot plant to receiving terminal header using with low pressure pump.
 - normal condition : 1 pump, at emergency : 2 pumps
2. Max. flow rate : 75 m³/h, At terminal : 12 kg/cm³. |
| Treatment of Evaporation Gas | 1. Vapor from the storage tank are treated in terminal gas header.
 - Low tank pressure : dissociating the pipes, vapor : incinerated by fire.
 - High tank pressure : sent to terminal vapor header.
2. Sudden rise in tank pressure (inflow to pilot plant TSV vapor header) : incinerated.
3. sudden drop (vacuum) : supplement with high pressure gas. |
| LNG Drain | 1. Drain and filling at low pressure, or in other pipes : Transport with fuel-gas or nitrogens.
2. Leftovers : sent using with TSV or vent line to incinerate. |
 - Nitrogen : total 500 Nm³/h [consisting vaporizer and storage tank(12 m³)].
 - Air : 200 Nm³/h air (consisting 200 Nm³/h compressor, dryer.) |
| Other utilities | 1. Flow meter : Between terminal and Pilot Plant
2. Shut-off valve : shut off when emergency. |

는 유량계를 치하여 압력력 유량을 측정도로 구성하고 비상시 차단할 수 있는 차단밸브가 설치된다.

3. 빈도분석

3.1 HAZOP Analysis

Pilot Plant에 대한 HAZOP 분석 결과 중 총 79건의 사고요소가 도출되었고, 실제 개선안 건수는 6건이다.

Table 3. Hazardous factors by using HAZOP analysis

<table>
<thead>
<tr>
<th>Classification</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Isolation</td>
<td>*Nitrogen injection line : Not used at normal condition, required the operation sheets and the check card (malfunction would lead the workers to injured or to death).</td>
</tr>
<tr>
<td>2. Tank indicators</td>
<td>*Multiple indicators : indicate liquid level, temperature, pressure, and require the documentation of the counteractions at abnormal operating</td>
</tr>
<tr>
<td>3. Circulation</td>
<td>*Recycle line : Filling header and Send-out header in tank, prevent the local evaporation and rupture inside the pipe, require the verification of indicator level with corresponding operation mode, and the check card of indicator level when altering operation mode.</td>
</tr>
<tr>
<td>4. Eduction</td>
<td>*Malfunction of eduction : No uses in LNG industries, require the manuals and check card of preventing the dangers of operator.</td>
</tr>
</tbody>
</table>
Table 4. No. of the items estimated node by node

<table>
<thead>
<tr>
<th>Node</th>
<th>Description</th>
<th>No. of Scenarios</th>
<th>No. of Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tank Unloading Line TK-P-202</td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>LP Pump and Discharge Lines</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Vapor Disposal System</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Make-Up Tank</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Scenarios No. of Amendments</td>
<td>79</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 5. Types of hazard in the nodes

<table>
<thead>
<tr>
<th>No. of Node</th>
<th>Study on section</th>
<th>Design intent</th>
<th>Type of the hazard</th>
</tr>
</thead>
</table>
| 1 | Tank Unloading Line TK-P-202 | Cargo line from Jetty to Pilot plant and storage tank | - Fire or explosion from line-release
- Rupture of line by thermal expansion
- Tank rupture from excess freezing
- Overfilling from excess unloading
- Tank damage from vacuum
- Out-of-order of level indicator |
| 2 | LP Pump and Discharge Lines | LP in tank and send-out line | - Sending out Stopped from the pump flaws
- Careless nitrogen injection
- Fire/explosion from release
- Rupture of line by thermal expansion |
| 3 | Vapor Disposal System | aper-treatment unitspilot plant | - Failure of pressure control from vapor-treatment systems |
| 4 | Make-Up Tank | Pilot Tank purge and Membrane Test | - Units damages from the rising pressure
- Human damage from the release of the liquefied nitrogen |

Table 6. Recommendations after the risk analysis

<table>
<thead>
<tr>
<th>No</th>
<th>Node</th>
<th>Risk ranking</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>Verify procedures to isolate N(_2)/fuel line after purge operation.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>Consider installing drain and vent line on the filling line between HCV-PO411 and XV-PO401.</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>Consider installing hydrocarbon detectors in vicinity of discharge of atmospheric PSV</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>Consider installing level deviation alarm</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>Verify procedures for re-circulation operation</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>Tag No. of LI on D-101 and TK-001 is same. Change the tag No. as the different tag No.</td>
</tr>
</tbody>
</table>

3.2 LNG 누출에 관한 고장수복분석
3.2.1 누출사용으로

기본 설계단계의 HAZOP분석내용과 상세설계 자료를 검토한 결과로 Pilot LNG 저장설비 및 관련 배관에서의 LNG 또는 NG누출에 관한 시나리오를 다음 Table 7과 같이 LOPA(Layer of Protection Analysis) 양식으로 정리 하였다. 천연가스 누출에 관한 시나리오는 원인과 결과로 구분하고 각 시나리오에 대하여 Pilot Plant 설계가 보유하고 있는 안전장치를 4가지 종류로 구분하였다. 실패보안 안전장치 1의 범주에는 시나리오의 발생을 방지하기 위한 절차(Start up Procedure)와 PCV(Pressure Control Valve), Ring spacer, O\(_2\) Sampling
<table>
<thead>
<tr>
<th>Seq no.</th>
<th>Dwg no.</th>
<th>Cause</th>
<th>Consequence</th>
<th>Safeguard 1</th>
<th>Safeguard 2</th>
<th>Safeguard 3</th>
<th>Safeguard4</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62-P04</td>
<td>Excess cool down during startup</td>
<td>Thermal stress to pipe and tank → Potential tank/pipe damage leading to fire/explosion</td>
<td>Startup procedure</td>
<td></td>
<td></td>
<td>PSV-P0607 opens at ___KG</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>62-P06</td>
<td>PCV-P0601 fails open and blind flange falls open</td>
<td>Increased pressure in tank - Potential tank damage and fire/ explosion</td>
<td>PCV-P1002 opens at 0.375KG for flaring</td>
<td>PAH-P0601/ P0604</td>
<td></td>
<td>PSV-P0603/P0604 opens at 0.393KG</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>62-P06</td>
<td>Rollover in tank TK-P202</td>
<td>Potential tank damage and fire/ explosion</td>
<td>PCV-P1002 opens at 0.375KG for flaring</td>
<td>PAH-P0601/ P0604</td>
<td></td>
<td>PSV-P0603/P0604 opens at 0.393KG</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>62-P06</td>
<td>Sudden drop in barometric pressure</td>
<td>Potential tank damage and fire/ explosion</td>
<td>PCV-P1002 opens at 0.375KG for flaring</td>
<td>PAH-P0601/ P0604</td>
<td></td>
<td>PSV-P0603/P0604 opens at 0.393KG</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>62-P06</td>
<td>Sudden increase in barometric pressure</td>
<td>Potential tank damage and fire/ explosion</td>
<td>PAL-P0605 (ESD I-P222) to open PCV-P1001 for makeup gas</td>
<td>PAL-P0601/ P0604</td>
<td></td>
<td>PSV-P0605/0606 opens at 0.0051KG</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>62-P10</td>
<td>PCV-P1003 fails closed by PIC- P1003 malfunction or RPM-P1004 fails closed</td>
<td>Increased pressure in tank - Potential tank damage and fire/ explosion</td>
<td>PCV-P1002 opens at 0.375KG for flaring</td>
<td>PAH-P0601/ P0604</td>
<td></td>
<td>PSV-P0603/P0604 opens at 0.393KG</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>62-P04</td>
<td>RPM-P0410 fails closed</td>
<td>Increased pressure in tank - Potential tank damage and fire/ explosion</td>
<td>PAH-P0601/ P0604</td>
<td></td>
<td></td>
<td>PSV-P0603/ P0604 opens at 0.393KG</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>62-P04</td>
<td>Error during filling operation</td>
<td>Tank overfill-Potential fire/ explosion</td>
<td>LAHH-0602/ 0603/ 0604/LAH- 0602/0603/0604</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8. Data lists of the basic events in fault tree analysis

<table>
<thead>
<tr>
<th>Name</th>
<th>Mean</th>
<th>Description</th>
<th>Cal Type</th>
<th>Lambda</th>
<th>Unit</th>
<th>Tau</th>
<th>Unit</th>
<th>EF</th>
<th>Dist Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD-F</td>
<td>8.76E-02</td>
<td>ESD actuated</td>
<td>I</td>
<td>1.00E-05</td>
<td>h</td>
<td>8760</td>
<td>h</td>
<td>3</td>
<td>L</td>
<td>Engineering Judgement</td>
</tr>
<tr>
<td>HCV-P0411-C</td>
<td>3.14E-02</td>
<td>HCV-P0411 closed</td>
<td>I</td>
<td>3.59E-06</td>
<td>h</td>
<td>8760</td>
<td>h</td>
<td>3</td>
<td>L</td>
<td>CCPS 3.5.3.3</td>
</tr>
<tr>
<td>ICBGCM-R</td>
<td>8.76E-02</td>
<td>BOG compressor fails to run</td>
<td>I</td>
<td>1.00E-05</td>
<td>h</td>
<td>8762</td>
<td>h</td>
<td>3</td>
<td>L</td>
<td>Engineering Judgement</td>
</tr>
<tr>
<td>LS1-H</td>
<td>1.00E-01</td>
<td>Operator failure to open vent valve</td>
<td>0</td>
<td>1.00E-01</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>L</td>
<td>L</td>
<td>Engineering Judgement</td>
</tr>
<tr>
<td>LS2-H</td>
<td>1.00E-01</td>
<td>Operator failure to respond to closure of RBM-P0404 and HCV-P0411</td>
<td>0</td>
<td>1.00E-01</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>L</td>
<td>L</td>
<td>Engineering Judgement</td>
</tr>
<tr>
<td>PCVP0610-C</td>
<td>3.14E-02</td>
<td>PCV-P0610 fails closed</td>
<td>I</td>
<td>3.59E-06</td>
<td>h</td>
<td>8766</td>
<td>h</td>
<td>3</td>
<td>L</td>
<td>CCPS 3.5.3.3</td>
</tr>
<tr>
<td>PCVP1001-C</td>
<td>2.30E-03</td>
<td>PCV-P1001 fails to open on tank low pressure</td>
<td>0</td>
<td>2.30E-03</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>L</td>
<td>L</td>
<td>CCPS 3.5.3.3</td>
</tr>
<tr>
<td>PSVP0605-O</td>
<td>1.47E-02</td>
<td>Vacuum PSV-P0605 premature opens</td>
<td>1</td>
<td>1.68E-06</td>
<td>h</td>
<td>8760</td>
<td>h</td>
<td>3</td>
<td>L</td>
<td>CCPS 4.3.3.2</td>
</tr>
<tr>
<td>PSVP0607-C</td>
<td>2.12E-02</td>
<td>Nitrogen PSV-P0607 fails to open on demand</td>
<td>0</td>
<td>2.12E-04</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>L</td>
<td>L</td>
<td>CCPS 4.3.3.2</td>
</tr>
<tr>
<td>TANK-L</td>
<td>8.76E-04</td>
<td>Major LBG release by loss of mechanical integrity of tank</td>
<td>I</td>
<td>1.00E-07</td>
<td>h</td>
<td>8760</td>
<td>h</td>
<td>10</td>
<td>L</td>
<td>Engineering Judgement</td>
</tr>
<tr>
<td>TKP202-BD</td>
<td>1.00E-02</td>
<td>Tank pressure rises due to sudden drop in barometric pressure</td>
<td>0</td>
<td>1.00E-02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>L</td>
<td>L</td>
<td>Engineering Judgement</td>
</tr>
<tr>
<td>TSVP0401-C</td>
<td>2.12E-04</td>
<td>TSVP-P0401 fails to open at 18Kg</td>
<td>0</td>
<td>2.12E-04</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>L</td>
<td>L</td>
<td>CCPS 4.3.3.2</td>
</tr>
<tr>
<td>TSVP0402-C</td>
<td>2.12E-04</td>
<td>TSVP-P0402 fails to open at 18Kg</td>
<td>0</td>
<td>2.12E-04</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>L</td>
<td>L</td>
<td>CCPS 4.3.3.2</td>
</tr>
<tr>
<td>TSVP0904-C</td>
<td>2.12E-04</td>
<td>TSVP-P0904 fails to open at 18Kg</td>
<td>0</td>
<td>2.12E-04</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>L</td>
<td>L</td>
<td>CCPS 4.3.3.2</td>
</tr>
</tbody>
</table>

Table 9. Classification of failure modes

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Fails to function</td>
</tr>
<tr>
<td>C</td>
<td>Fails closed or Fails to open</td>
</tr>
<tr>
<td>O</td>
<td>Fails open or Fails to close</td>
</tr>
<tr>
<td>R</td>
<td>Fails to run</td>
</tr>
<tr>
<td>B</td>
<td>Break/Rupture</td>
</tr>
<tr>
<td>H</td>
<td>Human error</td>
</tr>
<tr>
<td>A</td>
<td>Fails to actuate</td>
</tr>
<tr>
<td>L</td>
<td>Leak</td>
</tr>
</tbody>
</table>

3.2.2 기본사건 데이터

3.2.3 고장수록 작성
앞에서 정의된 각종 사나리오별로 논리를 구성하여 고장수록(Fault Tree)을 작성하였다. 고장수록은 Plant의 탱크 및 관련배관에서의 천연가스 누출을 정점사건(Top Event)으로 하여 누출의 요인을 과충전, 과압, 부압, 배관 파손, 압력안전밸브 또는 베이풀의 열림, 기계적 건전성 상실 등 크게 6가지로 구분하여 나타내었다(Fig. 1). 또한 과충전의 발생 원인과 해당 안전장치의 실패들을 논리적으로 연결하였다(Fig. 2). 과충전의 발생원인으로 탱크 충전식 압력 저지기의 기능이 상실되거나 운전원의 지시가 감시실파로 액위가 상승하는 경우를 고려하였다. 이에 대한 안전장치로 고액위(High Level) 경보 및 고고액위(High High Level) 신호에 의한 비상정지를 고려하였다. 또한 저장탱크 과압에 대해 증발 가스 처리설계 또는 증발가스 배관의 단결, 절도판의 부주의한 열림, 풍계류(Rollerover), 탱크압의 갑작스런 이상변동 등을 탱크내 액관의 원인으로 고려하였으며 이에 대한 안전장치로서 소하관과 압력안전밸브에 의한 방출을 고려하였다. 저장탱크 부압에 의한 파손
Fig. 1. Fault tree for in natural gas of tank & associated pipes.

Fig. 2. Fault tree for overfill in storage tank.

T. of Korean Institute of Fire Sci. & Eng., Vol. 18, No. 3, 2004
Fig. 3. Fault tree for overpressure in storage tank.

Fig. 4. Fault tree for vacuum in storage tank.
타원형의 배기밸브 또는 과압방지용 및 부압방지용 PSV가 잘못 열리는 경우의 천연가스 누출을 묘사하였다(Fig. 6).

3.2.4 정량화 결과
Pilot Plant 천연가스 누출에 대한 고정수록을 Table 10에서 수립된 데이터를 적용하여 정량화 하였다. 그
장수록 정량화 결과로 도출된 천연가스 누출에 의한 최소단절근의 목록은 그 발생 빈도와 합계 Table 10에 수록되어 있다. 이 목록에서 1.00E-09 이하의 빈도를 갖는 최소단절근은 삭제하였다. 정량화 결과를 Pilot Plant에서 천연가스 누출 빈도는 점추정제로 1.6E-2년으로 나타났으며 이는 평균적으로 60년에 한번 정도 누출이 발생하는 것을 의미한다.

누출빈도에 기여하는 최소 단절 균을 정리하면 다음과 같다.

1) 저장탱크 충전 중(TKP202-FL) 액위 지시기의 기능이 상실되어(LIP60234-F) 고역위에 이르고 고역위 정보에 윤전원의 조치가 적절하지 못하여(TLH-H) 고고역위에 이르고 여기에 고고역위에서 비상정지가 발생한(LAHHP060234-A) 경우가 천연가스 누출의 가장 큰 기여를 하는 것으로 나타났고, 총 누출빈도의 35%를 차지하고 있다.

2) 저장탱크 상부의 과압 방지용 PSV가 열리거나(PSVP0601-0, PSVP0601-0), 부압방지용 PSV가 열리(PSVP0605-0, PSVP0605-0) 기체상태의 천연가스가 누출되는 사건이 중요한 것으로 나타났고, 이들 4가지 사건이 전체 누출빈도에 각각 9.3%씩 총 37%를 차지하고 있다. 이는 기체상태의 누출로서 누출의 영향을 액체상태의 누출의 경우에 비해 그다지 중요하지 않다.

3) 탱크 상부의 배기밸브가 열리(RVPO618-0) 천연가스가 누출되는 것으로 전체 누출빈도의 8%를 차지하고 있다. 이는 앞의 PSV열림과 마찬가지로 기체상태의 누출로서 누출의 영향은 그다지 중요하지 않다.

4) 탱크 자체의 기계적 건설성 상실(TANK-L)로 인해 천연가스가 대규모로 누출되는 것으로 전체의 6%를 차지하고 있다. 이러한 사건에 대해서는 대규모의 액체 천연가스가 기로 누출되는 것으로 상세한 사고영향 분석이 필요하다.

5) 그 다음으로 탱크 입구에 축구 채관의 연결부가 손상(OEX-B, IEX-B)되는 것과 밸브가 손상(OVVB, IVVB)되는 것으로 전체 누출빈도의 각각 3%씩 12%를 차지하고 있다.

이상의 최소 단절 균이 전체 누출빈도의 98%를 차지하고 있는데 이중 액체 천연가스의 대규모 누출을 의미하는 사고도 있고, 영향이 그다지 크지 않는 기체 상태의 천연가스 누출사고도 포함되어 있다.
3.3 중도도/인감도 분석
3.3.1 중도도

여기에서는 고장수목의 각 기본사건의 중도도를 분석하였다. 고장수목에서 고려된 총 60개의 기본사건에 대해서 중도도를 분석한 결과는 Table 11에 수록되어 있다. 기본사건의 중도도는 Fussel-Vesely(F-V) 중도도, 위험도감소가치(Risk Achievement Worth : RAW), 위험도감소가치(Risk Reduction Worth : RRW)의 3가지 척도로 나타나 있다. F-V 중도도는 해당 기본사건이 포함되는 모든 최소단절군 빈도의 합과 전체 빈도의 비로서 정의되고, RRW 중도도가 크다는 의미는 해당 사건의 발생 확률이 0으로 되면 위험도의 감소 폭이 크다는 의미이다. 따라서 RRW가 큰 사건에 대해서는 발생확률을 줄이기 위한 노력을 기울여야 하며 설계가공에 우선순위를 부여하여야 한다. 또한 RAW 중도도가 크다는 의미는 해당 사건의 발생 확률이 1이 되면 위험도의 상승 폭이 크다는 의미이다. 따라서 RAW가 큰 사안에 대해서는 사각이 발생하지 않도록 하여야 하며 품질보증 프로그램, 정비 프로그램에 우선순위를 부여하여야 한다. F-V 중도도, RRW 중도도, RAW 중도도는 다음과 같은 식으로 표현된다.

\[
F-V\text{ 중도도} = F_1/F_0,\quad RRW\text{ 중도도} = F_2/F_1,\quad RAW\text{ 중도도} = F_3/F_0
\]

여기서,
\[F_0 = \text{현재의 위험도,} \]
\[F_1 = \text{사건 i를 포함하는 모든 최소단절군의 합,} \]
\[F_2 = \text{사건 i의 발생확률이 0일 때의 위험도,} \]
\[F_3 = \text{사건 i의 발생확률이 1일 때의 위험도} \]

를 나타낸다.

Table 11의 중도도 순위를 보면 RRW 측면에서는 텔크 총신 운전모드(TKP202-FL), 텔크 고고역위 신호 (LAHHP060234-A), 텔크 고기위시 운전원 조치(TLH-

<table>
<thead>
<tr>
<th>No.</th>
<th>Event</th>
<th>Mean</th>
<th>F-V</th>
<th>RRW</th>
<th>RAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TKP202-FL</td>
<td>1.00E-01</td>
<td>0.4263</td>
<td>1.7431</td>
<td>4.8366</td>
</tr>
<tr>
<td>2</td>
<td>LAHHP060234-A</td>
<td>5.00E-01</td>
<td>0.3654</td>
<td>1.5759</td>
<td>1.3654</td>
</tr>
<tr>
<td>3</td>
<td>TLH-H</td>
<td>5.00E-01</td>
<td>0.3643</td>
<td>1.5732</td>
<td>1.3634</td>
</tr>
<tr>
<td>4</td>
<td>LIP060234-F</td>
<td>2.20E-01</td>
<td>0.3495</td>
<td>1.5374</td>
<td>2.2393</td>
</tr>
<tr>
<td>5</td>
<td>TKP202-HP</td>
<td>1.00E-01</td>
<td>0.1863</td>
<td>1.2289</td>
<td>2.6766</td>
</tr>
<tr>
<td>11</td>
<td>RVP0618-O</td>
<td>1.33E-03</td>
<td>0.0843</td>
<td>1.0920</td>
<td>64.2804</td>
</tr>
<tr>
<td>12</td>
<td>TKP202-SO</td>
<td>1.00E-01</td>
<td>0.0609</td>
<td>1.0648</td>
<td>1.5478</td>
</tr>
<tr>
<td>13</td>
<td>TANK-L</td>
<td>8.76E-04</td>
<td>0.0555</td>
<td>1.0588</td>
<td>64.3092</td>
</tr>
<tr>
<td>14</td>
<td>IEX-B</td>
<td>4.99E-03</td>
<td>0.0316</td>
<td>1.0327</td>
<td>7.3048</td>
</tr>
<tr>
<td>15</td>
<td>OEX-B</td>
<td>4.99E-03</td>
<td>0.0316</td>
<td>1.0327</td>
<td>7.3048</td>
</tr>
<tr>
<td>21</td>
<td>LAHHP060234-A</td>
<td>1.49E-03</td>
<td>0.0011</td>
<td>1.0011</td>
<td>1.7276</td>
</tr>
<tr>
<td>22</td>
<td>IA-F</td>
<td>8.76E-02</td>
<td>0.0004</td>
<td>1.0004</td>
<td>1.0037</td>
</tr>
<tr>
<td>23</td>
<td>TSVP0904-O</td>
<td>2.12E-04</td>
<td>0.0002</td>
<td>1.0002</td>
<td>2.1194</td>
</tr>
<tr>
<td>24</td>
<td>LSS-H</td>
<td>1.00E-01</td>
<td>0.0002</td>
<td>1.0002</td>
<td>1.0021</td>
</tr>
<tr>
<td>25</td>
<td>TSVP0401-O</td>
<td>2.12E-04</td>
<td>0.0001</td>
<td>1.0001</td>
<td>1.5628</td>
</tr>
<tr>
<td>31</td>
<td>PSVP06056-O</td>
<td>2.12E-04</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0080</td>
</tr>
<tr>
<td>32</td>
<td>PICP1001-F</td>
<td>3.80E-01</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>33</td>
<td>RBMP0401-O</td>
<td>3.14E-02</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>34</td>
<td>RBMP0906-O</td>
<td>3.14E-02</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>35</td>
<td>RBMP0903-O</td>
<td>3.14E-02</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>56</td>
<td>RVP0623-O</td>
<td>8.76E-03</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>57</td>
<td>PCVP1002-C</td>
<td>2.20E-03</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>58</td>
<td>PCVP0610-C</td>
<td>3.14E-02</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>59</td>
<td>PSVP0067-C</td>
<td>2.12E-04</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>60</td>
<td>PCVP0601-O</td>
<td>3.14E-02</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

T. of Korean Institute of Fire Sci. & Eng., Vol. 18, No. 3, 2004
4. 사고경험평가

위에서 언급한 대로 LNG시설의 안전기준과 사고사례를 수집 정리함으로서 안전성평가를 위한 기초 자료로 활용하였고, Pilot LNG 저장시설의 실제 단계시 안전성평가를 수행하였다. LNG Pilot Plant의 LNG 누출에 따른 사고시나리오는 경성적 위험성 평가(HAZOP) 결과를 토대로 분석하여 작성하였고 작성된 사고사
리오별로 피해범위 및 영향 분석을 수행하였다. 분석결과 사고시나리오는 크게 4가지 형태로 구분할 수 있는데, 첫째는 Vent Valve나 PSV 또는 Vacuum 방지 velit
브의 오작동으로 인한 NG의 대기방출, 둘째는 저장탱크
게소로 인한 LNG 대기방출, 셋째는 탱크 inlet/ outlet관의 파손에 의한 LNG 방출 그리고 넷째는 격리
된 구간의 열팽창으로 인한 LNG의 대기 방출이다. 이
중 가장 빈번한 사나리오는 저장탱크 파손으로 인한
LNG의 누출이다. 이 경우 LNG는 Dike에 격리되고 폴
(Pool)을 형성 하게 되며 기화되고 확산하면서 (증기운
확산 : Vapor Cloud dispersion) 증기운이 형성된다. 유
출된 LNG는 가장자리에서 정화될 수 있으며, 기화속
도가 느려기 때문에 그 결과 화구(Fireball)가 형성되기
보다는 폭 화재(Pool Fire)가 발생한다. 따라서 본 영역
에서는 위의 4가지 경우에 대해 각각 사고경험분석을
실시하였으며, 탱크파손으로 LNG가 누출될 경우에 대
해 화재 위험성에 대해 좀 더 세밀히 검토하였다.

4.1 누출속도

Pilot LNG 저장시설에 대한 정성적 평가결과 누출에
관련된 사나리오는 Table 12와 같다. 이 결과를 근거로
하여 결과 분석을 수행하였다. 모든 사나리오의 누출
량 계산에 사용된 식은 다음과 같다.

\[
\text{누출속도}(W_b) = C_D \rho_l (2 \Delta P / \rho_l + 2gH)^{1/2}
(2)
\]

\[
\text{누출속도}(W_g) = C_D \rho_l [(S/MRT)2(S+1)]^{(S+1)(S-1)}^{1/2}
(3)
\]

여기서
\[
C_D = \text{discharge coefficient for orifice} = 0.61 \\
A = \text{punchure area. m}^2 \\
S = \text{gas specific heat ratio. 1.1} \\
\Delta P = P_{\text{operating}} - P_{\text{max}} \\
\rho_l = \text{density of liquid} \\
g = \text{acceleration of gravity} (9.8 \text{ m/s}^2) \\
H = \text{height of liquid(m)} \\
P = \text{operating pressure. N/m}^2 \\
M = \text{molecular weight(kg/kg-mol)} \\
R = \text{gas constant. 8314 J/kg-mol/k} \\
T = \text{operating temperature. K}
\]

4.2 Vent의 오작동 및 PSV방출로 인한 NG의 대
기 방출

Table 13의 계산결과 LFL은 형성하지 않는 것으로
타란하였으며, 누출시간에 따른 누출총량이 최악의 시나
리오로 증기운을 형성하였음을 경우 1psi의 파압이 발생
되는 경우로 계산하였다. 일반적으로 밀폐되지 않는 공
간에서의 분산가스는 폭발을 일으키지 않는 것으로 알려져 있으나 본 영역에서는 이 시나리오에 대해 폭발
이 다른 결과를 계산하였다. 일반적으로 (1) 증기운의
크기가 결과 분화가 가능성이 증가하고, (2) 증기운 점
화시 폭발보다의 화재의 가능성이 상대적으로 크며

한국화재소방학회 논문지, 제18권 제3호, 2004년
Table 12. Accident scenarios according to the results of frequency analysis

<table>
<thead>
<tr>
<th>Scenario No.</th>
<th>Scenario Group</th>
<th>Equipment</th>
<th>Scenario Description</th>
<th>Cause</th>
<th>Consequence</th>
<th>Release Material</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-01</td>
<td>1</td>
<td>P-202</td>
<td>Atmospheric vent valve RV-P0618 fails open</td>
<td>NG release from tank P202</td>
<td>NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-02</td>
<td>1</td>
<td>P-202</td>
<td>Atmospheric PSV-P0601/ P0602 fails open</td>
<td>NG release from tank P202</td>
<td>NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-03</td>
<td>1</td>
<td>P-202</td>
<td>Vacuum PSV-P0601/ P0602 fails open</td>
<td>NG release from tank P202</td>
<td>NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-04</td>
<td>2</td>
<td>P-202</td>
<td>Mechanical integrity failure</td>
<td>Tank P-202 damage</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-05</td>
<td>3</td>
<td>P-202</td>
<td>RPM-P0410 fails closed</td>
<td>Tank P-202 damage by high pressure</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-11</td>
<td>3</td>
<td>P-202</td>
<td>PCV-P1001 fails open</td>
<td>Tank P-202 damage by high pressure</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-12</td>
<td>3</td>
<td>P-202</td>
<td>Nitrogen RV-P0623 fails open</td>
<td>Tank P-202 damage by high pressure</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-13</td>
<td>2</td>
<td>P-202</td>
<td>PCV-P0601 fails open and PCV-P0610 fails closed</td>
<td>Tank P-202 damage</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-14</td>
<td>4</td>
<td>P-202</td>
<td>Sudden increase in barometric pressure</td>
<td>Tank P-202 damage by vacuum</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-15</td>
<td>4</td>
<td>P-202</td>
<td>Excess cooldown during startup</td>
<td>Tank P-202 damage by vacuum</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-21</td>
<td>7</td>
<td>Pipe</td>
<td>Outlet line valve rupture during sending operation</td>
<td>NG release from Outlet line</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-22</td>
<td>7</td>
<td>Pipe</td>
<td>Outlet line expansion joint rupture during sending operation</td>
<td>NG release from Outlet line</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-23</td>
<td>8</td>
<td>Pipe</td>
<td>Inlet line RBM-P0401 and HCV-P0411 fails closed</td>
<td>NG release from Inlet line rupture by thermal expansion</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-24</td>
<td>8</td>
<td>Pipe</td>
<td>Inlet line RBM-P0404 and HCV-P0411 fails closed</td>
<td>NG release from Inlet line rupture by thermal expansion</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
<tr>
<td>P-25</td>
<td>8</td>
<td>Pipe</td>
<td>Outlet Line RBM-P0903 and RBM-P0906 fails closed</td>
<td>NG release from Outlet line rupture by thermal expansion</td>
<td>LNG/NG</td>
<td>Dispersion Analysis Fire and explosion analysis</td>
<td></td>
</tr>
</tbody>
</table>

Table 13. Calculations of explosion effects when vapor cloud formed

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Size of release source (MW)</th>
<th>Release area (M²)</th>
<th>Release speed (kg/s)</th>
<th>Release time (Min)</th>
<th>Amount of total release (kg)</th>
<th>1psi Distance-10%</th>
<th>1psi Distance-3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-01</td>
<td>76.2</td>
<td>4.56e-03</td>
<td>0.8544</td>
<td>10</td>
<td>512.64</td>
<td>139.12</td>
<td>93.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.8544</td>
<td>60</td>
<td>3075.84</td>
<td>252.79</td>
<td>169.23</td>
</tr>
<tr>
<td>P-02</td>
<td>29.91</td>
<td>7.02E-04</td>
<td>0.1664</td>
<td>10</td>
<td>99.84</td>
<td>80.64</td>
<td>53.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1664</td>
<td>60</td>
<td>599.04</td>
<td>146.53</td>
<td>98.09</td>
</tr>
<tr>
<td>P-03</td>
<td>32.1</td>
<td>8.09E-04</td>
<td>0.2102</td>
<td>10</td>
<td>126.12</td>
<td>87.17</td>
<td>58.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2102</td>
<td>60</td>
<td>756.72</td>
<td>158.40</td>
<td>106.04</td>
</tr>
</tbody>
</table>

T. of Korean Institute of Fire Sci. & Eng., Vol. 18, No. 3, 2004
(3) 폭발시 효율은 비교적 작아서 연소에너지의 약 2% 정도만이 폭발임으로 변환되고 (4) 가연성 기체가 공기와 잘 혼합된 후 누출지점으로부터 먼 곳에서 점화 될수록 폭발의 규모가 크다. 가연성의 중기온은 히터, 버너, 및 담뱃불, 자동차, 전기시스템 등의 주변에서 혼히 볼 수 있는 점화원에 의해서 점화될 수 있다. 누출된 가연성물질이 10% 및 3% 폭발에 가깝다고 가정하였다. 계산에 사용된 식은 다음과 같다.

$$D = 17(0.1 \ W_f \ \frac{H_{f}}{H_{CNT}})^{1/3}$$

(4)

이와 같이 폭발 발생시 폭발압을 계산한 결과는 Table 13에 정리되어 있다.

4.4 저장탱크 파손으로 인한 LNG 대기방출
저장탱크 파손으로 인한 LNG 대기방출은 Table 12의 사고사례로 No. P-04-P-16에 해당한다. 누출결과는 최악의 사나리오를 선택 탱크의 파손으로 보았다. 즉 파손된 탱크로부터 1000㎥의 LNG가 일정한 시간 동안 Dike로 누출되었다고 가정하였다. 누출시간의 구분은 1분, 2분, 10분, 30분, 60분으로 구분하여 LFL반경을 계산하였다. Dike의 크기는 설계반경으로 인하여 미정이내, 1000㎥의 LNG을 담을 수 있는 용량에 1.5배로 가정하여 계산하였다. 탱크의 반경과 같은 거리로 면적과 같은 거리를 계산하였다. 누출은 탱크바닥에서 누출되어 가정하였으며, 탱크의 방출높이는 8.3m로 정상운전시 가정하였다. 탱크파손의 사고사례로에 대한 결과는 Table 14와 같다.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Size of release source (m)</th>
<th>Release area (m²)</th>
<th>Release time (min)</th>
<th>Release type</th>
<th>Release speed (kg/s)</th>
<th>Amount of total release (kg)</th>
<th>LFL Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.226</td>
<td>1.18</td>
<td>1</td>
<td>liquid</td>
<td>7583.33</td>
<td>455000</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>0.867</td>
<td>5.9E-01</td>
<td>2</td>
<td>liquid</td>
<td>3791.67</td>
<td>455000</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>0.388</td>
<td>1.18E-01</td>
<td>10</td>
<td>liquid</td>
<td>758.33</td>
<td>455000</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>0.224</td>
<td>3.94E-02</td>
<td>30</td>
<td>liquid</td>
<td>252.78</td>
<td>455000</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>0.158</td>
<td>1.96E-02</td>
<td>60</td>
<td>liquid</td>
<td>126.39</td>
<td>455000</td>
<td>33.95</td>
</tr>
</tbody>
</table>

Table 14. Accident scenarios relating to tank rupture

<table>
<thead>
<tr>
<th>Exposure time</th>
<th>10 sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total caloric value</td>
<td>1 x 10^6 kw</td>
</tr>
<tr>
<td>First degree burn</td>
<td>Second degree burn</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>거리 (m)</th>
<th>(\tau)</th>
<th>(F_p) (m²)</th>
<th>(Q_p) (kw)</th>
<th>(Q_x) (kw/m²)</th>
<th>(Pr)</th>
<th>(%)</th>
<th>(Pr)</th>
<th>(%)</th>
<th>(Pr)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.82</td>
<td>7.96E-04</td>
<td>656630</td>
<td>427.355</td>
<td>22.62</td>
<td>100</td>
<td>19.31</td>
<td>100</td>
<td>16.58</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>0.77</td>
<td>1.99E-04</td>
<td>656630</td>
<td>10.377</td>
<td>16.79</td>
<td>100</td>
<td>13.48</td>
<td>100</td>
<td>11.64</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>0.74</td>
<td>8.85E-05</td>
<td>656630</td>
<td>43.014</td>
<td>13.38</td>
<td>100</td>
<td>10.07</td>
<td>100</td>
<td>8.74</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>0.72</td>
<td>4.98E-05</td>
<td>656630</td>
<td>23.577</td>
<td>10.96</td>
<td>100</td>
<td>7.65</td>
<td>99</td>
<td>6.69</td>
<td>95</td>
</tr>
<tr>
<td>50</td>
<td>0.71</td>
<td>3.18E-05</td>
<td>656630</td>
<td>14.789</td>
<td>9.08</td>
<td>100</td>
<td>5.77</td>
<td>78</td>
<td>5.10</td>
<td>54</td>
</tr>
<tr>
<td>60</td>
<td>0.70</td>
<td>2.21E-05</td>
<td>656630</td>
<td>10.103</td>
<td>7.55</td>
<td>99</td>
<td>4.24</td>
<td>22</td>
<td>3.80</td>
<td>11</td>
</tr>
<tr>
<td>70</td>
<td>0.69</td>
<td>1.62E-05</td>
<td>656630</td>
<td>7.320</td>
<td>6.25</td>
<td>89</td>
<td>2.94</td>
<td>2</td>
<td>2.70</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>0.68</td>
<td>1.24E-05</td>
<td>656630</td>
<td>5.538</td>
<td>5.13</td>
<td>55</td>
<td>1.82</td>
<td>0</td>
<td>1.75</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>0.67</td>
<td>9.83E-06</td>
<td>656630</td>
<td>4.329</td>
<td>4.14</td>
<td>19</td>
<td>0.83</td>
<td>0</td>
<td>0.91</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0.66</td>
<td>7.96E-06</td>
<td>656630</td>
<td>3.474</td>
<td>3.25</td>
<td>4</td>
<td>-0.06</td>
<td>0</td>
<td>0.16</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0.658</td>
<td>6.58E-06</td>
<td>656630</td>
<td>2.846</td>
<td>2.45</td>
<td>0</td>
<td>-0.86</td>
<td>0</td>
<td>-0.52</td>
<td>0</td>
</tr>
</tbody>
</table>
LNG 누출로 줄 화재 발생시 복사일에 의한 피해를 계산하였다. 복사일에 대한 피해는 Table 15와 같이 사용된 데이터와 계산식은 다음과 같다.

- Dike Area = 375 m²
- Depth of Dike = 2 m
- Burning rate = 0.1 kg/m²s
- Heat of combustion = 50.029 kJ/kg
- Vapor pressure of water at 50% relative humidity and 20°C = 2320Pa
- Weather conditions are no wind, 20°C and 50% relative humidity
- Total heat released

\[Q = M_b E_c A \]

\[= 0.1 \text{ kg/m}^2\text{s} \times 50029 \text{ kJ/kg} \times 375 \text{ m}^2 \]

\[= 1876087 \text{ KJ/s} \]

\[= 1.88 \times 10^6 \text{ kw} \]

여기에
\[M_b = \text{ burning rate (kg/m}^2\text{s)} \]
\[E_c = \text{ heat of combustion (kJ/kg)} \]

\[A = \text{ pool area (m}^2\text{)} \]

- Radiation heat \(Q_R \)

\[Q_R = 0.35 \times Q \text{ (0.35 = radiation fraction for hydrocarbon fires, this radiation fraction is high for smoky fires)} \]

\[Q_R = 0.35 \times 1876087.5 \text{ kw} \]

\[Q_R = 6.6 \times 10^6 \text{ kw} \]

1도 화상 \(Pr = -39.83 + 3.0186 \text{ Ln t} \times q^{0.4} \)

2도 화상 \(Pr = -43.14 + 3.0186 \text{ Ln t} \times q^{0.4} \)

3도 화상 \(Pr = -36.38 + 2.56 \text{ Ln t} \times q^{0.4} \)

이여서 \(t \)는 복사일에 노출된 시간(초)를 말하며, \(q \)는 복사일 (w/m²)

\[Q_R = \text{ total heat radiated (kw)} \]

\[Q_X = \text{ thermal radiation received at distance X (kw/m}^2\text{)} \]

\[\text{Point source view factor, FP} = \frac{1}{4 \Pi X^2} \]

\[\text{Transmissivity} = \tau = 2.02(P_{w}X) - 0.09 \]

\[P_w = \text{ vapor pressure of water} \]

Table 16은 폭 잔경 및 비람의 속도에 대한 복사일

<table>
<thead>
<tr>
<th>Input</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
<th>Scenario 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Weight</td>
<td>17.00</td>
<td>17.00</td>
<td>17.00</td>
<td>17.00</td>
</tr>
<tr>
<td>Lng Liquid Density (KG/m³)</td>
<td>432.00</td>
<td>432.00</td>
<td>432.00</td>
<td>432.00</td>
</tr>
<tr>
<td>Boiling Temperature (K)</td>
<td>112.00</td>
<td>112.00</td>
<td>112.00</td>
<td>112.00</td>
</tr>
<tr>
<td>Flame Base Height (M)</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Target Height (M)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Pool Diameter (M)</td>
<td>10.04</td>
<td>10.09</td>
<td>10.92</td>
<td>10.92</td>
</tr>
<tr>
<td>Wind Speed (M/s)</td>
<td>7.90</td>
<td>2.00</td>
<td>7.90</td>
<td>2.00</td>
</tr>
<tr>
<td>Ambient Temperature (C)</td>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
</tr>
<tr>
<td>Relative Humidity (%)</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>Output</td>
<td>Scenario 1</td>
<td>Scenario 2</td>
<td>Scenario 3</td>
<td>Scenario 4</td>
</tr>
<tr>
<td>Mass Burning Rate (KG/m² S)</td>
<td>0.10891</td>
<td>0.10894</td>
<td>0.10928</td>
<td>0.10928</td>
</tr>
<tr>
<td>Flame Length (M)</td>
<td>23.84</td>
<td>23.92</td>
<td>25.32</td>
<td>25.32</td>
</tr>
<tr>
<td>Flame Tilt From Vertical (Deg)</td>
<td>61.53</td>
<td>18.51</td>
<td>61.07</td>
<td>15.98</td>
</tr>
<tr>
<td>Flame Drag Ratio</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>EFF. Emissive Power (KW/m²)</td>
<td>180.65</td>
<td>180.79</td>
<td>182.82</td>
<td>182.82</td>
</tr>
<tr>
<td>Thermal Flux (KW/m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Code Distance From Center of Pool (M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.5</td>
<td>28.43</td>
<td>15.44</td>
<td>30.56</td>
<td>16.27</td>
</tr>
<tr>
<td>21.1</td>
<td>32.09</td>
<td>21.72</td>
<td>35.32</td>
<td>22.88</td>
</tr>
<tr>
<td>12.6</td>
<td>38.67</td>
<td>30.42</td>
<td>41.51</td>
<td>32.11</td>
</tr>
<tr>
<td>5.05</td>
<td>51.14</td>
<td>49.06</td>
<td>54.97</td>
<td>52.11</td>
</tr>
</tbody>
</table>
을 계산한 결과이다.

4.5 관련 파이프 파손으로 인한 LNG 대기 방출

Table 12에서 정성적 분석 결과 중 파이프 파손으로 인한 LNG 대기방출은 사고나리오 No. P-17~P-25에 해당된다. 이 결과는 크게 2가지로 다시 구분할 수 있는데 연속적인 누출과 제한적인 누출이다. 즉 P-17~P-22는 연속적인 누출에 해당되며, P-23~P-25는 제한된 양의 누출이다. 먼저 연속적인 누출인 경우에 대한 결과를 살펴보면 다음과 같다. 크게 Filling Operation과 Sending Operation으로 구분하여 분석을 수행하였다. 누출원의 크기는 라인 크기의 1/2로 파손되고 그 둘은 라인크리의 1/8로 가정하여 실제 사고 결과와 유사하도록 계산하였다. 결과를 요약하면 Table 17과 같다.

제한된 누출에 대한 결과를 살펴보면 다음과 같다. 사고나리오의 내용은 Table 12의 P-23~P-25이다. 즉 격리된 구간 내의 열팽창으로 인해 압력이 증가하게 되고 이로 인한 TSV의 작동볼록으로 라인의 손상은 가져오게 된다. 이 경우 누출되는 LNG량은 격리된 구간내로 한정된다. 요약된 결과는 다음 Table 18이다.

5. 연구결과 및 고찰

본연구의 연구결과를 살펴보면 먼저 사고발생빈도 정량화 결과 Pilot Plant에서의 케이스 뉴발로는 정적 분석에서 1.6E-2로 나타났으며, 이는 평균적으로 60년에 한 번 정도 누출이 발생하는 것을 의미한다. 그리고 사고나리오는 크게 4가지 형태로 구분할 수 있다. 첫째 벤트/발로관에서의 누출시는 LFL반경은 형성하지 않았다. 둘째는 펌프파손으로 인한 LNG유출이라는 최악의 시나리오를 작성하여 분석을 수행하였다. 분석된 결과는 살펴보면 총 누출량이 갈등하며 누출된 시간에 따라 확산범위가 다르게 나타났다. 1분 및 2분 동안 누출량 평균적으로 400, 200 m로 계산되었으며, 10분 누출시 100 m 그리고 30분, 60분 동안 장기간 누출량은 75 m, 33.95 m로 단기간 대량 누출시 보다 훨씬 작은 LFL값을 보였다. 즉 단기간 대량 누출시가 상대적으로 장기간 소량 누출시보다 더 심각한 결과를 초래한다는 것을 의미한다. 세째는 inlet/outlet 파이프 손상으로 인한 누출시 10분과 60분 두 경우에 대해 실시하였으며 25 m와 35 m의 LFL반경으로 큰 차이를 보이지 않았다. 펌프 누출결과에서 알 수 있듯이 LNG누출 사고의 경우 다른 가연성물질과 다르게 전체 사고발생크기는 초기 방출량의 크기에 의존하고 있음을 알 수 있다. 넷째는 격리구간에서의 라인 파손으로 25 m의 LFL을 보였다. 유출된 LNG가 정화장에서의 화재가 발생할 경우(pool fire)복사열에 대한 피해를 계산하였다. 1000 m²의 LNG가 누출되어 폭 화재가 발생할 경우 30초동안 화재에 노출시 1도 화상의 피해로 부터 안전거리의 약 110 m이고, 2도 및 3도 화상의 피해로부터 안전거리가 80 m로 나타났다. LNGFIRE의 계산결과를 보면 10.04 m 원형상태의 폭화재의 경우 폭이 7.9 m에서 불꽃의 길이는 23.84 m, 불꽃의 가시기는 수직방향에서 61.35 m 그리고 5.05 km²가 미치는 거리는 51.4 m로 계산되었다. 즉 폭이 길수록 복사 열의 피해가 커짐을 알 수 있다.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1/2(M) of line size</th>
<th>Size of release gap (MM)</th>
<th>Release time (min)</th>
<th>Release type</th>
<th>Release speed (kg/s)</th>
<th>Amount of total release (kg)</th>
<th>LFL Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling (P-17-P-19)</td>
<td>0.762</td>
<td>0.3175</td>
<td>10</td>
<td>liquid</td>
<td>2.93</td>
<td>1758</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>liquid</td>
<td>2.93</td>
<td>10548</td>
<td>35.01</td>
</tr>
<tr>
<td>Sending (P-20-P-22)</td>
<td>0.508</td>
<td>0.3175</td>
<td>10</td>
<td>liquid</td>
<td>4.9</td>
<td>2940</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>liquid</td>
<td>4.9</td>
<td>17640</td>
<td>32.79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Line length in confined section (M)</th>
<th>Line size (inches)</th>
<th>Release time (s)</th>
<th>Release type</th>
<th>Release speed (kg/s)</th>
<th>Amount of total release (kg)</th>
<th>1psi-Distance (M)</th>
<th>LFL Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-23</td>
<td>9.376</td>
<td>6</td>
<td>27</td>
<td>liquid</td>
<td>2.93</td>
<td>77.83</td>
<td>74.21</td>
<td>25</td>
</tr>
<tr>
<td>P-24</td>
<td>7.196</td>
<td>6</td>
<td>21</td>
<td>liquid</td>
<td>2.93</td>
<td>59.73</td>
<td>67.95</td>
<td>25</td>
</tr>
<tr>
<td>P-25</td>
<td>194.5</td>
<td>4</td>
<td>148</td>
<td>liquid</td>
<td>4.9</td>
<td>723.24</td>
<td>156.03</td>
<td>25</td>
</tr>
</tbody>
</table>

한국화재소방학회 논문지, 제18권 제3호, 2004년
6. 결론

본 연구에서는 Pilot Plant 저장시설의 설계단계에 따라 기본 설계(정성적인 HAZOP 및 상세설계(Fault Tree Analysis) 두 단계에 걸쳐 안전성 평가를 수행하였다. 상세설계단계에서의 안전성평가는 기본설계단계에서 수행한 HAZOP 분석결과를 토대로 상세설계내용을 전반적으로 사고사례리포트를 발생빈도(FTA)와 사고발생시의 사고영향(LNGFIRE3)을 흘러가며 분석하였 다. 구체적으로 상세설계가 진행되면서 기본설계 사항을 반영하여 사고사례리포트를 정리하고, 이에 따라 고장수복분석을 수행하였다. 그리고 사고에 의한 LNG 또는 NG 누출시 확산분석과 화재발생시 복사열 계산 등 사고영향분석을 수행하였다. 이렇게 살펴본 바와 같이 본 연구를 수행함으로서 첫째 천연가스 공급시설의 취약성에 대한 개선 입력작용으로서 효율적인 사고예방활동의 역할을 기대할 수 있고, 동종사고의 경감 및 관리자원의 효율화를 기할 수 있으며, 둘째 천연가스 공급시설의 효율적 운용 및 안전성 향상방안 도출할 수 있었다. 셋째 천연가스 공급시설의 정량화된 위험성분석으로 우선 순위화된 취약시설, 취약한 장소 파악이 가능하며 관리정책 수립에 활용할 수 있으며, 천연가스의 저장과 공급에 포함되는 공정 전체에 대한 예방 사고를 도출할 수 있었다. 넷째 천연가스 가스 누출시에는 확산에 대한 예측을 가능하게 함으로써 예방저감 활동에 이용할 수 있으며, 관련자에게는 예측에 필요한 정보를 제공함으로써 피해를 최소화할 수 있는 지침을 마련하였다. 향후 천연가스 공급시설의 신설 및 확장시에는 사고의 누출에 따른 비도 및 결과 영향을 가장 적절하게 평가할 수 있는 수치적 이론 및 software 모델들을 더욱 더 검토하여 누출에 대한 결과 모델링(Consequence Model)을 발전시킴으로써, 인간의 건강, 환경, 안전에 미치는 영향을 평가하기 위한 세분화된 정량적인 유해 위험성 평가기술을 마련해야 할 것이다.

참고문헌