Identification of Amino-Acids Residues for Key Role in Dextransucrase Activity of Leuconostoc mesenteroides B-742CB

  • Ryu, Hwa-Ja (Laboratory of Functional Carbohydrate Enzymes and Microbial Genomics, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University) ;
  • Kim, Do-Man (Laboratory of Functional Carbohydrate Enzymes and Microbial Genomics, School of Biological Sciences and Technology, Chonnam National University) ;
  • Seo, Eun-Seong (Laboratory of Functional Carbohydrate Enzymes and Microbial Genomics, Department of Materials and Biochemical Engineering, Chonnam National University) ;
  • Kang, Hee-Kyung (Laboratory of Functional Carbohydrate Enzymes and Microbial Genomics, Engineering Research Institute, Chonnam National University) ;
  • Lee, Jin-Ha (Laboratory of Functional Carbohydrate Enzymes and Microbial Genomics, Engineering Research Institute, Chonnam National University) ;
  • Yoon, Seung-Heon (Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University) ;
  • Cho, Jae-Young (Laboratory of Functional Carbohydrate Enzymes and Microbial Genomics, Department of Materials and Biochemical Engineering, Chonnam National University) ;
  • Robyt, John-F. (Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University) ;
  • Kim, Do-Won (Department of Physics, Kangnung National University) ;
  • Chang, Suk-Sang (Ponghang Accelarator Laboratory, Pohang University of Science and Technology) ;
  • Kim, Seung-Heuk (Lifeza Co., Ltd) ;
  • Kimura, Atsuo (Graduate school of Agriculture, Kokkaido University)
  • Published : 2004.10.01

Abstract

Dextransucrase (DSRB742) from Leuconostoc mesenteroides NRRL B-742CB is a glucosyltransferase that catalyzes the synthesis of dextran using sucrose, or the synthesis of oligosaccharides when acceptor molecules, like maltose, are present. The DSRB742 gene (dsrB742) was cloned and the properties were characterized. In order to identify critical amino acid residues, the DSRB742 amino acid sequence was aligned with glucosyltransferase sequences, and three amino acid residues reported as sucrose binding amino acids in Streptococcus glucosyltransferases were selected for site-directed mutagenesis experiments. Asp-533, Asp-536, and His-643 were independently replaced with Ala or Asn. D533A and D536A dextransucrases showed reduced dextran synthesis activities, 2.3% and 40.8% of DSRB742 dextransucrase, respectively, and D533N, D536N, H643A, end H643N dextransucrases showed complete suppression of dextran synthesis activities altogether. Additionally, D536N dextransucrase showed complete suppression of oligosaccharide synthesis activities. However, modifications at Asp-533 or at His-643 retained acceptor reaction activities in the range of 8.4% to 21.3% of DSRB742 acceptor reaction activity. Thus at least two carboxyl groups of Asp-533 and Asp-536, and His-643 as a proton donor, are essential for the catalysis process.

Keywords

References

  1. Fu, D. and J. F. Robyt. 1988. Essential histidine residues in dextransucrase: Chemical modification by diethyl pyrocarbonate and dye photo-oxidation. Carbohydr. Res. 183: 97-109 https://doi.org/10.1016/0008-6215(88)80049-1
  2. Jeon, E. J., I. H Jung, K. S. Cho, E. S. Seo, D. Kim, S.-J. Lee, K. H. Park, and T. W. Moon. 2003. Low cariogenicity of maltosyl-erythritol, major transglycosylation product of erythritol, by Bacillus stearothermophilus maltogenic amylase. J. Microbiol. Biotechnol. 13: 815- 818.
  3. Kang, H-K., E.-S. Seo, J. F. Robyt, and D. Kim. 2003. Directed evolution of a dextransucrase for increased constitutive activity and the synthesis of a highly branched dextran. J. Mol. Cat. B: Enz, 26: 167-176
  4. Kato, C., Y. M. L. Nakano, and H. K. Kuramitsu. 1992. Molecular genetics analysis of the catalytic site of Streptococcus mutans glucosyltransferases. Biochem. Biophy. Res. Comm. 189: 1184-1188.
  5. Kim, C. Y., J.-H. Lee, B. H. Kim, S. K. Yoo, E. S. Seo, K. S. Cho, D. F. Day, and D. Kim. 2002. Production of mannitol using Leuconostoc mesenteroides NRRL B-1149. Biotechnol. Bioprocess Eng. 7: 234- 236.
  6. Kim, D. and J. F. Robyt. 1994. Properties of Leuconostoc mesenteroides B-512FMC constitutive dextransucrase. Enzyme Microbial Technol. 16: 1010- 1015.
  7. Kim, D. and J. F. Robyt. 1994. Production and selection of mutants of Leuconostoc mesenteroides constitutive for glucansucrases. Enzyme Microbial Technol. 16: 659- 664.
  8. Kim, D. and J. F. Robyt. 1995. Production, selection, and characteristics of mutants of Leuconostoc mesenteroides B742 constitutive for dextransucrases. Enzyme Microbial Technol. 17: 689- 695 https://doi.org/10.1016/0141-0229(94)00021-I
  9. Kim, D. and J. F. Robyt. 1995. Dextransucrase constitutive mutants of Leuconostoc mesenteroides B-1299. Enzyme Microbial Technol. 17: 1050- 1056.
  10. Kim, H. S., D. Kim, H. J. Ryu, and J. F. Robyt. 2000. Cloning and sequencing of the ${\alpha}-1{\to}6$ dextransucrase gene form Leuconostoc mesenteroides B-742CB. J. Microbiol. Biotechnol. 10: 559- 563.
  11. Koepsell, H. J., H M. Tsuchiya, N. N. Hellman, A. Kazendo, C. A. Hoffman, E. S. Sharpe, and R. W. J. Jackson. 1953. Enzymatic synthesis of dextran: Acceptor specificity and chain initiation. J. BioI. Chem. 200: 793-801.
  12. Lee, J. H., S. O. Lee, G. O. Lee, E. S. Seo, S. S. Chang, S. K. Yoo, D. W. Kim, D. F. Day, and D. Kim. 2003. Transglycosylation reaction and raw starch hydrolysis by novel carbohydrolase from Lipomyces starkeyi. Biotechnol. Bioprocess Eng. 8: 106- 111.
  13. MacGregor, A. E., H. M. Jespersen, and B. Svensson. 1996. A circularly permutated $\alpha$-amylase type ${\alpha}/{\beta}$ barrel structure in glucan-synthesizing glucosyltransferases. FEMS Lett. 378: 263- 266.
  14. Magali, R. S., R. M. Willemot, and P. Monsan. 2000. Glucansucrase: molecular engineering and oligosaccharide synthesis. J. Mol. Cat. B: Enz. 10: 117-128.
  15. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual, pp. 1.1-1.107. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.
  16. Monchois, V., M. Rernaud-Simeon, P. Monsan, and R.-M. Willemot. 1998. Cloning and sequencing of a gene coding for an extracellular dextransucrase (DSRB) from Leuconostoc mesenteroides NRRL B-1299 synthesizing only a ${\alpha}-1{\to}6$ glucan. FEMS Microbiol. Lett. 159: 307- 315.
  17. Monchois, V., M. Remaud-Simeon, R. R. B. Ressell, P. Monsan, and R.-M. Willemot. 1997. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Appl. Microbial. Biotechnol. 48: 465- 472.
  18. Monchois, V., M. Vignon, and R. R. B. Russell. 1999. Isolation of key amino acid residues at the N-terminal end of the core region Streptococcus downei glucansucrase, GTF-I. Appl. Microbiol. Biotechnol. 52: 660- 665.
  19. Monchois, V., R.-M. Willemot, M. Remand-Simeon, C. Croux, and P. Monsan. 1996. Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing only ${\alpha}-1{\to}6$ and ${\alpha}-1{\to}3$ linkages. Gene 182: 23- 32. https://doi.org/10.1016/S0378-1119(96)00443-X
  20. Mooser, G., S. A. Hefta, R. J. Paxton, J. E. Shively, and T. D. Lee. 1991. Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from Streptococcus sobrinus $\alpha$-glucosyltransferases. J. Biol. Chem. 266: 8916-8922.
  21. Mooser, G. and K. R. Iwaoka. 1989. Sucrose 6-aglucosyltransferase from Streptococcussobrinus:Characterization of a glucosyl-enzyme complex. Biochemistry 28: 443- 449.
  22. Park, J. S., B. H. Kim, J. H. Lee, E. S. Seo, K. S. Cho, H. J. Park, H. K. Kang, S. K. Yoo, M. S. Ha, H. J. Chung, D. L. Cho, D. F. Day, and D. Kim. 2003. Optimization for novel glucanhydrolase production of Lipomyces starkeyi KSM22 by statistical design. J. Microbiol. Biotechnol. 13: 993- 997.
  23. Park, M. R., H. J. Ryu, D. Kim, J. Y. Choe, and J. E Robyt. 2001. Characterization of Leuconostoc mesenteroides B-742CB dextransucrase expressed in Escherichia coli. J. Microbiol. Biotechnol. 11: 628- 635.
  24. Park, M. R., S. Y. Lee, H. J. Ryu, H. S. Kim, H. K. Kang. S. K. Yoo, S. Y. Cho, D. L. Cho, D. Kim, and D. W. Kim. 2001. Cloning and characterization of a gene coding for dextransucrase from Leuconostoc mesenteroides B-742CB. Kor. J. Biotechnol. Bioeng. 16: 188- 199.
  25. Parnaik, V. K., G. A Luzio, D. A Grahame, S. L. Ditson, and R. M. Mayer. 1983. A D-glucosylated form of dextran sucrase: Preparation and characteristics. Carbohydr. Res. 121: 257268. https://doi.org/10.1016/0008-6215(83)84022-1
  26. Paul, E, E. Oriol, D. Auriol, and P. Monsan. 1986. Acceptor reaction of a highly purified dextransucrase with maltose and oligosaccharides: Application to the synthesis of controlledmolecular- weight dextrans, Carbohydr. Res. 149: 433- 441.
  27. Robyt, J. F 1995. Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohydn Chem. Biochem. 51: 133- 168.
  28. Robyt, J. F., B. K. Kimble, and T. W. Walseth. 1974. The mechanism of dextransucrase action; Direction of dextran biosynthesis. Arch. Biochem. Biophys. 165: 634- 640.
  29. Robyt, J. E and T E. Walseth. 1978. The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 61: 433- 445.
  30. Ryu, H. J., D. Kim, D. W.Kim, Y. Y. Moon, and J. F Robyt. 2000. Cloning of a dextransucrase gene (fincmds) from constitutive dextransucrase hyper-producing Leuconostoc mesenteroides B-512FMCM developed using VUV.Biotechnol. Lett. 22: 421-425.
  31. Ryu, H. J., K. E. Yi, D. W. Kim, Y. D. Jung, S. S. Chang, E. S. Seo, K. Y. Lee, M. M. Day, and D. Kim. 2002. Direct evidence for the radioprotective effect of various carbohydrates on plasmid DNA and Escherichia coli cells. J. Microbiol. Biotechnol. 12: 598- 602.
  32. Shimamura, A., Y. J. Nakano, H. Mukasa, and H. K. Kuramitsu. 1994. Identification of amino acid residues in Streptococcus mutants glucosyltransferase influencing the structure of the glucan product. J. Bacteriol. 176: 4845-4850.
  33. Shiroza, T, S. Ueda, and H. K. Kuramitsu. 1987. Sequence analysis of the gtfB gene from Streptococcus mutans. J. Bacteriol. 169: 4263- 4270.
  34. Tanrivseven, A and J. E Robyt. 1992. Inhibition of dextran synthesis by acceptor reactions of dextransucrase and the demonstration of a separate acceptor binding site. Carbohydr. Res. 225: 321- 329.
  35. Ueda, S., T Shiroza, and H. K. Kuramitsu. 1988. Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene 69: 101- 109.