Chiral Separation of Ibuprofen by Supercritical Fluid Chromatography

초임계유체 크로마토그래피를 이용한 Ibuprofen의 키랄분리

  • 한순구 (초정밀생물분리기술연구센터, 인하대학교 화학공학과) ;
  • 노경호 (초정밀생물분리기술연구센터, 인하대학교 화학공학과)
  • Published : 2004.08.01

Abstract

The separation method using chiral stationary phase in preparation of chiral compound was wildly used, but in this work, supercritical fluid chromatography was suggested in the stability to resolve the chiral mixtures. To determine the optimum operating condition of the racemic ibuprofen, the retention factor and resolution with change in pressures, temperatures and the contents of IPA % (vol.) in CO$_2$ were investigated. The retention factor was decreased with increase in pressure and decrease in temperature. The factor was also influenced by the content of IPA in mobile phase, while the resolution was worse with a increase in IPA %. From the experimental results, the desirable separation condition was 130 bar, 311.15 K and 4% IPA in CO$_2$. Compared to the asymmetric peak shape by liquid chromatography, that of supercritical fluid chromatography was symmetric which was a favorable condition for preparative separation.

최근 생체 내에서 다른 약리활성을 보이는 키랄물질의 고순도 제조에 관심이 증가되고 있다. 현재 널리 사용되고 있는 것은 키랄고정상을 이용한 기존 분리방법에 비해서, 제조 후 안정성과 환경적인 측면을 고려한 초임계유체를 이용한 분리방을 시도하였다. 본 연구에서는 키랄물질인 ibuprofen의 최적의 분리 조건을 구하기 위해서 온도와 압력, 첨가되는 IPA의 양에 따른 체류인자와 분리도의 영향을 고찰하였다. 온도가 감소하고 압력이 증가할수록 체류인자는 감소하였다. IPA의 양에 따라 더 큰 영향을 받아서 IPA의 양이 많을수록 분리도는 감소하는 경향을 보였다. 실험으로부터 정한 최적의 분리조건은 130 bar, 311.15 K, 4% IPA (vol.)일 때이었다. 동일한 주입량에서 액체 크로마토그래피에서는 비선형의 용출곡선을 보였지만, 초임계유체 크로마토그래피에서는 선형의 용출곡선을 얻었다.

Keywords

References

  1. Chiral Separation by Chromatography Ahuja, S.
  2. J. Chromatogr. A v.785 Chiral packed column subcritical fluid chromatography on polysaccharide and macrocyclic antibiotic chiral stationary phases Medvedovici, A.;P. Sandra;L. Torbio;F. David https://doi.org/10.1016/S0021-9673(97)00585-2
  3. J. Chromatogr. A v.826 Analytical supercritical fluid chromatography using fully automated column and modifier selection valves for the rapid development of chiral separations Manon, S. V.;A. J. Robert https://doi.org/10.1016/S0021-9673(98)00696-7
  4. J. Org. Chem. v.27 High pressure gas chromatography above critical temperatures Klesper, E.;A. H. Corwin;D. A. Turner https://doi.org/10.1021/jo01049a069
  5. Korean J. Chem. Eng. v.18 Separation of perillyl alcohol in korean orange peel by supercritical $CO_2$ and preparative high-performance liquid chromatography Lee, C. H.;Y. W. Lee;J. D. Kim;K. H. Row https://doi.org/10.1007/BF02699177
  6. Anal. Chem. v.72 SFC of drug enantiomers Phinney, K. W.
  7. J. Chromatogr. Sci. v.27 Chiral resolutions in SFC : Mechanisms and applications with various chiral stationary phases Macaudiere, P.;M. Caude;R. Rosset;A. Tambute https://doi.org/10.1093/chromsci/27.10.583
  8. J. Chromatogr. v.506 Comparison of stationary phases for packed-column supercritical fluid chromatography Schoenmakers, P. J.;G. M. Louis;H.-G. JANSSEN https://doi.org/10.1016/S0021-9673(01)91605-X
  9. The Journal of Supercritical Fluid v.17 no.2 Solubilities of solid mixtures in supercritical carbon dioxide Lucien, F. P.;N. R. Foster https://doi.org/10.1016/S0896-8446(99)00048-0
  10. J. Chromatogr. A v.826 Analytical supercritical fluid chromatography using fully automated column and modifier selection valves for the rapid development of chiral separations Villeneuve M. S.;R. J. Anderegg https://doi.org/10.1016/S0021-9673(98)00696-7
  11. J. Phar. Biomed. Anal. v.16 Chiral high performance liquid chromatogrphy resolution of ibuprofen esters Ducrer, A.;M. Trani;P. Pepin;R.Lorie