RF Dispersion and Linearity Characteristics of AlGaN/InGaN/GaN HEMTs

AlGaN/InGaN/GaN HEMTs의 RF Dispersion과 선형성에 관한 연구

  • Lee, Jong-Uk (School of Electronics and Information, Kyung Hee University)
  • Published : 2004.11.01

Abstract

This paper reports the RF dispersion and linearity characteristics of unpassivated AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beam epitaxy (MBE). The devices with a 0.5 ${\mu}{\textrm}{m}$ gate-length exhibited relatively good DC characteristics with a maximum drain current of 730 mA/mm and a peak g$_{m}$ of 156 mS/mm. Highly linear characteristic was observed by relatively flat DC transconductance (g$_{m}$) and good inter-modulation distortion characteristics, which indicates tight channel carrier confinement of the InGaN channel. Little current collapse in pulse I-V and load-pull measurements was observed at elevated temperatures and a relatively high power density of 1.8 W/mm was obtained at 2 GHz. These results indicate that current collapse related with surface states will not be a power limiting factor for the AlGaN/InGaN HEMTs.

본 논문에서는 molecular beam epitaxy (MBE)로 성장한 AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs)의 선형성과 RF dispersion 특성을 조사하였다. 전극 길이가 0.5 ㎛인 AlGaN/InGaN HEMT는 최대 전류 밀도가 730mA/mm, 최대 전달정수가 156 mS/mm인 비교적 우수한 DC 특성과 함께, 기존의 AlGaN/GaN HEMT와는 달리 높은 게이트 전압에도 완만한 전류 전달 특성을 보여 선형성이 우수함을 나타내었다. 또한 여러 다른 온도에서 측정한 펄스 전류 특성에서 소자 표면에 존재하는 트랩에 의한 전류 와해 (current collapse) 현상이 발생되지 않음을 확인하였다. 이 연구 결과는 InGaN를 채널층으로 하는 GaN HEMT의 경우 선형성이 우수하고, 고전압 RF 동작조건에서 출력저하가 발생하지 않는 고출력 소자를 제작할 수 있음을 보여준다.

Keywords

References

  1. L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes, R. Dimitrov, H. Kim, O. S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W. J. Scha, and J. R. Shealy, 'Undoped AlGaN/GaN HEMTs for microwave power amplification,' IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 479-485, Mar. 2001 https://doi.org/10.1109/16.906439
  2. N. Q. Zhang, S. Keller, G. Parish, S. Heikmann, S. P. DenBaars, and U. K. Mishra, 'High breakdown GaN HEMT with overlapping gate structure,' IEEE Electron Device Lett., vol. 21, pp. 421-423, Sept. 2000 https://doi.org/10.1109/55.863096
  3. A. Chini, R. Coe, G. Meneghesso, E. Zanoni, D. Buttari, S. Keikman, S. Keller, and U. K. Mishra, '2.1 A/mm current density AlGaN/GaN HEMT,' Electron Lett, vol. 39, no. 7, pp. 625-626, 2003 https://doi.org/10.1049/el:20030382
  4. R. S. Schwindt, V. Kumar, A. Kuliev, G. Simin, J. W. Yang, M. A. Khan, M. E. Muir, and I. Adesida, 'Millimeter-wave high-power 0.25-${\mu}m$ gate-length AlGaN/GaN HEMTs on SiC substrates,' IEEE Microwave Wireless Compon Lett., vol. 13, no. 3, pp. 93 - 95, Mar. 2003 https://doi.org/10.1109/LMWC.2003.810115
  5. J. Kuzmik, 'Power electronics on InAlN/(In)GaN: Prospect for a record performance,' IEEE Electron Device Lett., vol. 22, no. 11, pp. 510-512, Nov. 2001 https://doi.org/10.1109/55.962646
  6. S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, 'GaN: processing, defects, and devices,' J Appl. Phys., vol. 86, pp. 1 - 78, 1999 https://doi.org/10.1063/1.371145
  7. A. D. Carlo, F. D. Sala, P. Lugli, V. Fiorentini, and F. Bernardini, 'Doping screening of polarization fields in nitride heterostructures,' Appl. Phys. Lett, vol. 76, no. 26, pp. 3950 - 3952, June 2000 https://doi.org/10.1063/1.126831
  8. E. Kohn, I. Daurniller, M. Kunze, M. Neuburger, M. Seyboth, T. J. Jenkins, J. S. Sewell, J. V. Norstand, Y. Smorchkova, and U. K. Mishra, 'Transient characteristics of GaN-based heterostructure field-effect transistors,' IEEE Trans. Microwave Theory Tech, vol. 51, no. 2, pp. 634-642, Feb. 2003 https://doi.org/10.1109/TMTT.2002.807687
  9. G. Simin, X. Hu, A. Tarakji, J. Zhang, A. Koudymov, S. Saygi, J. Yang, A. Khan, M. S. Shur, and R. Gaska, 'AlGaN/InGaN/GaN double heterostructure field-effect transistor,' Jpn. J. Appl. Phys., vol. 40, no. 11A, pp. L1142 - L1144, Nov. 2001 https://doi.org/10.1143/JJAP.40.L1142
  10. Y-M. Hsin, H.-T. Hsu, C.-C. Chuo, and J.-I. Chyi, 'Device characteristics of the GaN/InGaN -doped channel HFETs,' IEEE Electron Device Lett., vol. 22, no. 11, pp. 501 - 503, Nov. 2001 https://doi.org/10.1109/55.962643
  11. Agilent Technologies, IC-CAP modeling software, 2000
  12. N. Vellas, C. Gaquiere, Y. Guhel, M. Werquin, F. Bue, R. Aubry, S. Delage, F. Semond, and J. C. De Jaeger, 'High linearity performances of GaN HEMT devices on silicon substrate at 4 GHz,' IEEE Electron Device Lett., vol. 23, no. 8, pp. 461-463, Aug. 2002 https://doi.org/10.1109/LED.2002.801328
  13. S. C. Cripps, RF power amplifiers for wireless communications, Artech House, 1999
  14. I. Daurniller, C. Kirchner, M. Karnp, K. J. Ebeling, and E. Kohn, 'Evaluation of the temperature stability of AlGaN/GaN heterostructure FET's,' IEEE Electron Device Lett., vol. 20, no. 9, pp. 448 - 450, Sep. 1999 https://doi.org/10.1109/55.784448
  15. Accent Optical Technologies, Inc, DIVA User Manual, 2001
  16. G. Verzellesi, R. Pierobon, F. Rampazzo, G. Meneghesso, A. Chini, U. K. Mishra, C. Canali, and E. Zanoni, 'Experimental/numerical investigation on current collapse in AlGaN/GaN HEMTs,' in IEDM Tech Dig., 2002, pp. 689-692 https://doi.org/10.1109/IEDM.2002.1175932
  17. R. J. Trew, 'AlGaN/GaN HFET amplifier performance and limitations,' in IEEE M1T-S Int. Microwave Symp. Digest, 2002, vol. 3, pp. 1811-1814 https://doi.org/10.1109/MWSYM.2002.1012214