DOI QR코드

DOI QR Code

Implication of the Change in Overturning Circulation to the LGM CO2 Budget

  • 발행 : 2004.09.30

초록

The observational proxy estimates suggest that the North Atlantic overturning stream function associated with the North Atlantic Deep Water (NADW) production and outflow was substantially weaker during the last glacial maximum (LGM) than that observed under present conditions. The impact of the changes in overturning circulation on the glacial carbon budget is investigated using a box model. The carbon box model reveals that the atmospheric $CO_2$ concentration is more sensitive to change in the overturning circulation of the North Atlantic than that of the Southern Ocean, especially when North Atlantic overturning becomes weaker. For example, when the strength of the North Atlantic overturning circulation is halved, the atmospheric $CO_2$ concentration is reduced by 50ppm of that associated with the accumulation of $CO_2$ in the deep ocean. This result implies that a weaker North Atlantic overturning circulation may play an important role in the lowering of LGM atmospheric $CO_2$ concentration.

키워드

참고문헌

  1. Barnola, J.M., D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1987. Vostok ice core provides 160000-year record of atmospheric $CO_{2}$. Nature, 329, 408-418. https://doi.org/10.1038/329408a0
  2. Boyle, E.A. 1992. Cadmium and $\delta^{13}$C paleochemical ocean distributions during the stage 2 glacial maximum. Ann. Rev. Earth Planet. Sci., 20, 245-287. https://doi.org/10.1146/annurev.ea.20.050192.001333
  3. Boyle, E.A. and L. Keigwin. 1982. Deep circulation of the North Atlantic over the last 200,000 years: geochemical evidence. Science, 218, 784-787. https://doi.org/10.1126/science.218.4574.784
  4. Boyle, E.A. and L. Keigwin. 1987. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature, 330, 35-40. https://doi.org/10.1038/330035a0
  5. Broecker, W.S. and T.-H. Peng. 1982. Tracers in the sea. Publication of Lamont-Doherty Geological Observatory, Columbia University, New York.
  6. Broecker, W.S. and G.M. Henderson. 1998. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial $CO_{2}$ changes. Paleoceanography, 13, 352-364. https://doi.org/10.1029/98PA00920
  7. Curry, W.B. and G.P. Lohman. 1982. Carbon isotope changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns. Quat. Res., 18, 218-235. https://doi.org/10.1016/0033-5894(82)90071-0
  8. Curry, W.B., J.-C. Duplessy, L.D. Labeyrie, and N.J. Shackleton. 1988. Changes in distribution of $\delta^{13}C$ of deepwater $\sum_{}^{}CO_{2}$ between the last glaciation and the Holocene. Paleoceanography, 3, 317-342. https://doi.org/10.1029/PA003i003p00317
  9. Dickson, R.R. and J. Brown. 1994. The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99(C6), 12319-12341. https://doi.org/10.1029/94JC00530
  10. Duplessy, J.-C., J. Moyes, and C. Pujol. 1980. Deep water formation in the North Atlantic ocean during the last ice age. Nature, 286, 476-482. https://doi.org/10.1038/286476a0
  11. Duplessy, J.-C., N.J. Shackleton, R.G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel. 1988. Deep water source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3,343-360. https://doi.org/10.1029/PA003i003p00343
  12. Fichefet. T., A. Hovine, and J.-C. Dupplessy. 1994. A model study of the Atlantic thermohaline circulation during the last glacial maximum. Nature, 372, 252-255. https://doi.org/10.1038/372252a0
  13. Foster, T.D. and E.C. Carmack. 1976. Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res., 23, 301-317.
  14. Francois, R., M.A. Altabet, E.-F. Yu, D.M. Sigman, M.P. Bacon, M. Frank, G. Bohrmann, G. Bareille, and L.D. Labeyrie. 1997. Contribution of Southern Ocean surfacewater stratification to low atmospheric $CO_{2}$ concentrations during the last glacial period. Nature, 389, 929-935. https://doi.org/10.1038/40073
  15. Ganachaud, A. and C. Wunsch. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453-457. https://doi.org/10.1038/35044048
  16. Gill, A.E. 1973. Circulation and bottom water production in the Weddell Sea. Deep-Sea Res., 20, 111-140.
  17. Hall, I.R., N. McCave, N.J. Shackleton, G.P. Weedon, and S.E. Harris. 2001. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times. Nature, 412, 809- 812. https://doi.org/10.1038/35090552
  18. Heinze, C., E. Maier-Reimer, and K. Winn. 1991. Glacial p$CO_{2}$ reduction by the world ocean: experiments with the Hamburg carbon cycle model. Paleoceanography, 6, 395-430. https://doi.org/10.1029/91PA00489
  19. Killworth, P.D. 1983. Deep convection in the world ocean. Rev. Geophys., 21, 1-26. https://doi.org/10.1029/RG021i001p00001
  20. Kim, S.-J., G.M. Flato, and G.J. Boer. 2003. A coupled climate model simulation of the Last Glacial Maximum, Part 2: approach to equilibrium. Clim. Dyn., 20, 635-661.
  21. Knox, F. and M.B. McElroy. 1984. Changes in atmospheric $CO_{2}$: Influence of the marine biota at high latitude. J. Geophys. Res., 89, 4629-4637. https://doi.org/10.1029/JD089iD03p04629
  22. Leubenberger, M., U. Siegenthaler, and C.C. Langway. 1992. Carbon isotope compositions of atmospheric CO2 during the last ice age from an Antarctic core. Nature, 357,488-490. https://doi.org/10.1038/357488a0
  23. Marino, B.D., M.B. McElroy, R.J. Salawitch, and W.G. Spaulding. 1992. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric $CO_{2}$. Nature, 357, 461-466. https://doi.org/10.1038/357461a0
  24. Oppo, D.W. and R.G. Fairbanks. 1987. Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the Southern Ocean. Earth Planet. Sci. Lett., 86, 1-15. https://doi.org/10.1016/0012-821X(87)90183-X
  25. Oppo, D.W. and Y. Rosenthal. 1994. Cd/Ca changes in deep Cape Basin core over the past 730,000 years: Response of circumpolar deepwater variability to northern hemisphere ice sheet melting? Paleoceanography, 9, 661-675. https://doi.org/10.1029/93PA02199
  26. Oppo, D.W. and M. Horowitz. 2000. Glacial deep water geochemistry: South Atlantic benthic foraminiferal Cd/Ca and $^{13}C$ evidence. Paleoceanography, 15, 147-160. https://doi.org/10.1029/1999PA000436
  27. Orsi, A.H., G.C. Johnson, and J.L. Bullister. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog.Oceanogr., 43, 55-109. https://doi.org/10.1016/S0079-6611(99)00004-X
  28. Rintoul, S.R. 1991. South Atlantic interbasin exchange. J.Geophys. Res., 96(C2), 2 675-2 692.
  29. Rintoul, S.R. 1998. On the origin and influence of Adelie Land bottom water. p. 151-171. In: Ocean, Ice, and atmosphere: Interactions at the Antarctic Continental Margin. eds. by S.S. Jacobs and W.R. Weiss. Antarctic Research Series, Vol. 75, American Geophysical Union.
  30. Rutberg, R.L., S.R. Hemming, and S.L. Goldstein. 2000. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios.Nature, 405, 935-938. https://doi.org/10.1038/35016049
  31. Sarmiento, J.L. and J.R. Toggweiler. 1984. A new model for the role of the ocean in determining atmospheric $pCO_{2}$. Nature, 308, 621-624. https://doi.org/10.1038/308621a0
  32. Sarnthein, M., K. Winn, S.J.A. Jung, J.-C. Duplessy, L. Labeyrie, H. Erienkeuser, and G. Ganssen. 1994. Changes in east Atlantic deep water circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9, 209-269. https://doi.org/10.1029/93PA03301
  33. Schmitz Jr., W. and M.S. McCartney. 1993. On the North Atlantic circulation. Rev. Geophys., 13, 29-49.
  34. Schulz, M., D. Seidov, M. Sarnthein, and K. Stattegger. 2001. Modeling ocean-atmosphere carbon budgets during the Last Glacial Maximum-Heinrich 1 meltwater event-Bolling transition. Int. J. Earth. Sci., 90, 412-425. https://doi.org/10.1007/s005310000136
  35. Siegenthaler, U. and T. Wenk. 1984. Rapid atmospheric $pCO_{2}$ variations and ocean circulation. Nature, 308, 624-626. https://doi.org/10.1038/308624a0
  36. Sievers, H.A. and W.D. Nowlin, Jr. 1984. The stratification and water masses at Drake Passage. J. Geophys. Res.,89, 10489-10514. https://doi.org/10.1029/JC089iC06p10489
  37. Sigman, D.M. and E.A. Boyle. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859-869. https://doi.org/10.1038/35038000
  38. Sloyan, B.M. and S.R. Rintoul. 2001. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143-173. https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2
  39. Stephens, B.B. and R.F. Keeling. 2000. The influence of Antarctic sea ice on glacial-interglacial $pCO_{2}$ variations. Nature, 409, 171-174. https://doi.org/10.1038/35051544
  40. Toggweiler, J.R. 1999. Variations of atmospheric $pCO_{2}$ by ventilation of the earth’s deepest water. Paleoceanography,14, 571-588. https://doi.org/10.1029/1999PA900033
  41. Toggweiler, J.R. and B. Samuels. 1995. Effect of Drake Passage on the global thermohaline circulation. Deep- Sea Res., 42, 477-500. https://doi.org/10.1016/0967-0637(95)00012-U
  42. Warren, B.A. 1981. Deep circulation of the world ocean. p. 6-41. In: Evolution of Physical Oceanography. eds. by B.A. Warren and C. Wunsch. The MIT Press.
  43. Weaver, A.J., M. Eby, A.F. Fanning, and E.C. Wiebe. 1998. Simulated influence of carbon dioxide, oribital forcing and ice sheets on the climate of the last glacial maximum. Nature, 394, 847-853. https://doi.org/10.1038/29695
  44. Whitworth, III, T., A.H. Orsi, S.-J. Kim, W.D. Nowlin, Jr., and R.A. Locarnini. 1998. Water masses and mixing near the Antarctic Slope Front. p. 1-27. In: Ocean, ice, and atmosphere: Interactions at the Antarctic continental margin. eds. by S.S. Jacobs and W.R. Weiss. Antarctic Research Series, Vol. 75, American Geophysical Union.
  45. Yu, E-F, R. Francois, and P. Bacon. 1996. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature, 379, 689-694. https://doi.org/10.1038/379689a0