Sensitivity of BOD Sensor with Heavy Metal Tolerant Serratia marcescens LSY4

Serratia marcescens LSY4 중금속 내성주를 이용한 BOD센서의 감응도

  • 김말남 (상명대학교 자연과학부) ;
  • 이선영 (상명대학교 자연과학부)
  • Published : 2004.09.01

Abstract

A BOD sensor was prepared with S. marcescens LSY4 and was applied for measurement of BOD values of a solution containing the standard organic pollutants. The sensor sensitivity was nearly independent of the culture time in the range of 9-16 hours. It was also affected little by the cell mass in the range of 0.22-0.75 mg $cm^{-2}$. A cyclic change in the solution pH in the range of 4-9 was accompanied by a reversible variation in the sensor sensitivity. However, the reversibility was lost when the solution pH became more acidic or more basic. Heavy metal ions lowered the sensor sensitivity, which took place more precipitously in the presence of $Cu^{2+}$ and $Ag^+$ rather than in the presence of $Zn^{2+}$ and $Cd^{2+}$. The reduction of the sensor sensitivity was significantly attenuated by loading heavy metal ion tolerance induced strain. The $Cu^{2+}$tolerance induced strain was more efficient for the attenuation than $Zn^{2+}$ and $Cd^{2+}$ tolerance induced strain.

S. marcescens LSY4가 충전된 BOD센서를 제작하여 표준오염물질을 포함한 수용액의 BOD를 측정하였다. 배양시간이 9∼16시간일 때에는 배양시간에 따른 BOD센서의 감응도에 큰 차이를 나타내지 않았으며, 균체량도 0.22~0.75mg $cm^{-2}$의 범위에서는 거의 동일한 센서의 감응도를 나타내었다. 수용액의 pH가 4~9사이로 변화할 경우 센서의 감응도가 가역적으로 변화하였으나 수용액이 더 산성이거나 더 염기성이 되면 센서의 감응도가 비가역적으로 저하되었다. 수용액에 중금속이온이 첨가되면 센서의 감응도가 감소하였으며, $Zn^{2+}$$Cd^{2+}$보다 $Cu^{2+}$혹은 $Ag^+$가 첨가되었을 때 센서의 감응도가 더 급격히 감소하였다. 중금속에 대한 내성이 유도된 균체를 충전하였을 때 중금속이온의 첨가에 따른 센서의 감응도 감소가 크게 완화되었으며, 이런 효과는 $Cd^{2+}$내성주보다 $Cu^{2+}$내성주에서 더 현저하였다.

Keywords

References

  1. Beaubien A and C Jolicoeur. 1985. Applications of filw micrometry to process control in biological treatment of industrial wastewater. J. Water. Pollut. Control Fed. 57:95-100
  2. Brookmon SKE. 1997. Estimation of Biochemical oxygen demand in slueey and effluents using ultra-violet spectrophotometry. Wat. Ress. 31:372-374 https://doi.org/10.1016/S0043-1354(96)00250-3
  3. Hyun CK, E Tamiya, T Takeuchi, I Karube and N Inoue. 1993. A novel BOD sensor based on bacterial hiimne-scenes. Biotechnol. Bioeng. 41:1107-1111 https://doi.org/10.1002/bit.260411114
  4. JIS. 1974. Testing methods for industrial wastewater. Japanese Industrial Standards Committee JIS K0102. Tokyo. Japan. pp.33
  5. Karube I, T Matsunaga, S Mitsuda and S Suzuki. 1997a. Mirobial electrode BOD sensor. Biotechnol. Bioeng. 19:1535-1547 https://doi.org/10.1002/bit.260191010
  6. Karube I, T Matsunaga, S Tsuru and S Suzuki. 1977b. Biochemical fuel cell utilizing immobilized cells of Ctostridium butyricum. Biotechnol. Bioeng. 19:1727-1733 https://doi.org/10.1002/bit.260191112
  7. Kim MN and HS Kwon. 1994. Biochemical oxygen demand sensor using Serratia marcescens LSY 4. Biosens. Bio-electron. 14:1-7
  8. Li F and TC Tan. 1994a. Effect of heavy metal ions on the efficacy of a mixed Bacilli BOD semsor. Biosens. Bio-electron. 9:315-324 https://doi.org/10.1016/0956-5663(94)80030-8
  9. Li F and TC Tan. 1994b. Monitoring BOD in the presence of heavy metal ions using a poly (4-viny1pyridine)-coated microbial senser. Biosens. Bioelectron. 9:445-455 https://doi.org/10.1016/0956-5663(94)90033-7
  10. Li YR and J Che. 1991. Study of BOD microbial sensors for wastewater stream control. Appl. Biochem. Biotechnol. 28:855-863 https://doi.org/10.1007/BF02922655
  11. Marty JL, D Olive, Y Asano and 1997. Measurement of BOD: correlation between 5-day BOD and commercial BOD biosensor values. Environ. Technol. 18:333-337 https://doi.org/10.1080/09593331808616544
  12. Raviv R and S Ben-Yaakov. 1984. A simple algorrithm for on-line prediction of BOD5 by a microprocessor-based system. Biotech. Bioeng. 26:1239-1244 https://doi.org/10.1002/bit.260261014
  13. Sangeetha. S, G Sugandhi, M Murugesan, V Murali Madhav, S Berchmans, R Rajasekar, S Rajasekar, D Jeyakumar and G Prabhakara Rao. 1996. Torutopsis candida based sensor for the estimation of biochemical oxygen demand and its evaluation. Electroanalysis 8:698-707 https://doi.org/10.1002/elan.1140080718
  14. Tan TC and Z Qian. 1997. Dead Bacittus subtiIis cells for sensing biochemical oxygen demand of waters and wastewaters. Sensor Actuat. B 40:65-70 https://doi.org/10.1016/S0925-4005(97)00013-0
  15. Tanaka H, E Nakamura, Y Minaimyama and T Toyoda. 1994. BOD biosensor for secondary effluent from waste-water treatment plants. Wat. Sci. Tech. 30:215-227
  16. Yang Z, H Suzuki, S Sasaki and I Karube. 1996. Disposable sensor for biochemical oxygen demand. Appl. Microbiol. Biotechnol. 46:10-14 https://doi.org/10.1007/s002530050776