Molecular Phylogenetic Relationships Within the Genus Alexandrium(Dinophyceae) Based on the Nuclear-Encoded SSU and LSU rDNA D1-D2 Sequences

  • Kim, Choong-Jae (Environmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Sako Yoshihiko (Department of Applied Bioscience, Graduate School of Agriculture, Kyoto University) ;
  • Uchida Aritsune (Department of Applied Bioscience, Graduate School of Agriculture, Kyoto University) ;
  • Kim, Chang-Hoon (Department of Aquaculture, Pukyong National University)
  • Published : 2004.09.01

Abstract

LSU rDNA D1-D2 and SSU rDNA genes of 23 strains in seven Alexandrium (Halim) species, A. tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid), A. fraterculus (Balech) Balech, A. affine (Inoue et Fukuyo) Balech, A. insuetum Balech, A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo and A. tamiyavanichii Balech, were sequenced and the data were used for molecular phylogenetic analysis. The sequence data revealed 11 and 7 ribotypes in the LSU rDNA D1-D2 region and 4 and 17 ribotypes in the SSU rDNA region of A. catenella and A. tamarense, respectively. Other Alexandrium species had also 1 to 5 ribotypes in the two regions. With the exception of CMC2 and CMC3 of A. catenella, all A. tamarense and A. catenella strains had a common ribotype, a functionally expressed rRNA gene (here termed type A), in both gene regions. In addition to the functionally expressed gene, several pseudogenes were obtained that were found to be good tools to analyze the population designation of regional isolates by grouping them according to shared ribotypes. From the phylogenetic analysis of the sequence data determined in this study and retrieved from GenBank, the genus Alexandrium was divided into 14 groups: 1) A. tamarense, 2) A. excavatum, 3) A. catenella, 4) Tasmanian A. tamarense, 5) A. affine (and/or A. concavum), 6) Thai A. tamarense, 7) A. tamiyavanichii, 8) A. fraterculus, 9) A. margalefii, 10) A. andersonii, 11) A. ostenfeldii, 12) A. minutum (or A. lusitanicum), 13) A. insuetum, and 14) A. pseudogonyaulax. The SSU rDNA gene sequence of A. fundyense was so similar to those of A. tamarense used in this study that the two species were difficult to discriminate each other. A. tamiyavanichii was closest to the A. tamarense strain isolated in Thailand and close to the long chain-forming species of A. affine and A. fraterculus. The phylogenetic tree showed that A. margalefii, A. andersonii, A. ostenfeldii, A. minutum and A. insuetum constituted the basal relative complex, and that A. pseudogonyaulax is an ancestral taxon in the genus Alexandrium.

Keywords

References

  1. Adachi, M., Y. Sako and Y. Ishida, 1993a. The identification of conspecific dinoflagellates Atexandrium tamarense from Japan and thailand by monoclonal antibodies. Nippon Suisan Gakkaishi, 59: 327-332
  2. Adachi, M., Y. Sako and Y. Ishida, 1994. Restriction fragment length polymorphism of ribosomal DNA internal transcribed spacer and 5.8S regions in Japanese Alexandrium species (Dinophyceae). J. Phycol., 30: 857-863
  3. Adachi, M., Y. Sako and Y. Ishida, 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol., 32: 424-432
  4. Adachi, M., Y. Sako and Y. Ishida, 1997. Analysis of Gymnodinium catenatum (Dinophyceae) using sequences of the 5.8S DNA-ITS regions and random amplified polymorphic DNA. Fish. Sci., 63: 701-707
  5. Alan, M.I., C.P. Hsu and Y. Shimizu, 1979. Comparison of toxins in three isolates of Gonyaulax tamarensis (Dinophyceae). J. Phycol., 15: 106-110
  6. Anderson, D.M., 1990. Toxin variability in Alexandrium species In: Toxic marine phytoplankton, edited by Granneli, E., B. Sundstrom, L. Edler and D.M. Anderson, Elsevier, New York, pp.41-51
  7. Anderson, D.M., 1997. Diversity of harmful algal blooms in coastal waters. Limnol. Oceanogr., 42: 1009-1022
  8. Balech, E. and K. Tangen, 1985. Morphology and taxonomy of toxic species in the tamarnesis group (Dinophyceae) Alexandrium excavatum (Braarud) comb. nov. and Alexandrium ostenfeldii (Paulsen) comb. nov. Sarsia., 70: 333-343
  9. Bergquist, P.R. and R.A. Reeves, 1995. Nucleotide sequence of the 18S rRNA gene form marine dinoflagellate Alexandrium species, (unpublished)
  10. Boczar, B.A., J. Liston and R.A. Cattolico, 1991. Characterization of satellite DNA from three marine dinoflagellates (Dinophyceae): Glenodinium sp. and two members of the toxic genus, Protogonyaulax. Plant physiol., 97: 613-618
  11. Bolch, C.J., S.I. Blackburn, G.M. Hallegraeff and R.E. Vaillancourt, 1998. Genetic variation among different global populations of Gymnodinium catenatum revealed by RAPD-PCR. In: Hannful Microalgae, edited by Reguera, B., J. Blanco, M.L. Femandez and T. Wyatt, Xunta de Galicia and UNESCO, Paris, pp. 283-286
  12. Bolch, C.J., S.I. Blackburn, G.M. Hallegraeff and R.E. Vaillancourt, 1999. Genetic variation among strains of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). J. Phycol. 35: 356-367
  13. Boyer, G.L., J.J. Sullivan, R.J. Anderson, F.J.R. Taylor, P.J. Harrison and A.D. Cembella, 1986. The use of HPLC to investigate the production of paralytic shellfish toxins by Protogonyaulax spp. in culture. Mar. Biol., 93: 361-370
  14. Cembella, A.D and F.J.R. Taylor, 1986. Electrophoretic variability within the Protogonyaulax tamarensis/catenella species complex: pyridine linked dehydrogenases. Biochem. Syst. Ecol., 14:311-323
  15. Cembella, A.D., F.J.R. Taylor and J.C. Therriault, 1988. Cladistic analysis of electrophoretic variants within the toxic dinoflagellate genus Protogonaulax. Bot. Mar., 31: 39-51
  16. Costas, E and V. Lopez-Rodas, 1994. Identification of marine dinoflagellates using fluorescent lectins. J. Phycol., 30: 987-990
  17. Felsenstein, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 17: 368-376
  18. Felsenstein, J., 1984. Distance methods for inferring phylogenies: justification. Evotution, 38:16-24
  19. Felsenstein, J., 1985. Confidence limits on phytogenies: an approach using the bootstrap. Evolution, 39: 783-791
  20. Felsenstein, J., 1995. PHYLIP (Phylogeny Inference Package), Version 3.572c. Distributed by the author, Department of Genetics, University of Washington, Seattle
  21. Fukuyo, Y., 1985. Morphology of Protogonyaulax tamarensis (Lebour) Taylor and Protogonyaulax catenella (Whendon and Kofoid) Taylor from Japanese coastal waters. Bull. Mar. Sci., 37:529-537
  22. Hall, S., 1982. Toxicity of Protogonyaulax from the northeast Pacific. Ph. D. Thesis, Univ, Alaska, Fairbanks, AK
  23. Hallegraeff, G.M., 1993. Review of harmful algal blooms and their apparent global increase. Phycotogia, 32: 79-99
  24. Hayhome, B., D.M Anderson, D.M. Kulis and D.J. Whitten, 1989. Variation among congeneric dinoflagellates from the northeastern United States and Canada. I. Enzyme electrophoresis. Mar. Biol., (Berl.) 101: 427-435
  25. Kim, C-J., 2000. PSP toxin production and molecular biological identification of regional isolates of the genus Alexandrium (Dinophyceae) occurring in Korean coastal waters. M.S. Thesis, Pukyong National University, Busan, Korea
  26. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120
  27. Maranda, L., D.M. Anderson and Y. Shimizu, 1985. Comparison of toxicity between populations of Gonyaulax tamarensis of eastern North American waters. Estuar. Estl. Shelf Sci., 21: 401-410
  28. Mendoza, H., V. Lopez-Rodas, S. Gonzalez-Gil, A. Aguilera and E. Gostas, 1995. The use of polyclonal antisera and blocking of antibodies in the identification of marine dinoflagellates: species-specific and clone specific antisera against Gymnodinium and Alexandrium. J. Exp. Mar. Biol. Ecol., 186: 103-115
  29. Ogata, T., T. Ishimaru and M. Kodama, 1987. Effect of water temperature and light intensity on growth rate and toxicity change in Protosonyaulax tamarensis. Mar. Biol., 95: 217-220
  30. Penna, A. and M. Magnani, 2000. A PCR immunoassay method for the detection of Alexandrium (Dinophyceae) species. J. Phycol., 36: 1183-1186
  31. Prakash, A., 1967. Growth and toxicity of a marine dinoflagellate Gonyaulax tamarensis. J. Fish. Res. Bd. Can., 24: 1589-1596
  32. Proctor, N.H., S.L. Chan and A.J. Trevor, 1975. Production of saxitoxin by cultures of Gonyaulax catenella. Toxicon, 13: 1-9
  33. Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis and H.A. Erlich, 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNApolymerase. Science Washington DC, 239: 487-491
  34. Saitou, N. and M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425
  35. Sako, Y., C.H. Kim, H. Ninomiya, M. Adachi and Y. Ishida, 1990. Isozyme and cross analysis of mating populations in the Alexandrium catenella/tamarense species complex. In: Toxic marine phytoplankton, edited by Graneli, E., K. Sundstrom and D.M. Anderson, Elsevier, New York, pp. 320-323
  36. Sako, Y., M. Adachi and Y. Ishida, 1993. Preperaton and characterization of monoclonal antibodies to Alexandrium species. In: Toxic phytoplankton blooms in the sea, edited by. Smayda, T.J and Y. Shimizu, Elsevier, New York, pp. 87-93
  37. Scholin, C.A., D.M. Anderson and M. Sogin, 1993. Two distinct small-subunit ribosomal RNA genes in the North American toxic dinoflagellate Alexandrium fundyense (Dinophyceae). J. Phycol., 29: 209-216
  38. Scholin, C.A. and D.M. Anderson, 1994. Identification of species and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). I. RFLP analysis of SSU rRNA genes. J. Phycol., 30: 744-754
  39. Scholin, C.A., G.M. Hallegraeff and D.M. Anderson, 1995. Molecular evolution of the Alexandrium tamarense 'species complex' (Dinophyceae): dispersal in the North American and West Pacific regions. Phycologia, 34: 472-485
  40. Scholin, C.A., M. Herzog, M. Sogin and D.M. Anderson, 1994. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol., 30: 999-1011
  41. Shimizu, Y, 1978. Dinoflagellate toxins, In: Marine products, edited by Scheur, P.J., Academic Press, New York, pp. 1-44
  42. Taylor, F.J.R., 1984. Toxic dinoflagellates: Toxonomic and biogeographic aspects with emphasis on Protogonyaulax. In: Seafood Toxins, ACS symposium series 262, edited by Ragelis, E.P., American chemical Society, Washington, pp. 78-81
  43. Thomson, J.D., T.J. Gibson, F. Plewniak and F. Jeanmougin, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 24: 4876-4882. Available on the Internet at ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/
  44. Vrieling, E.G., W.W.C. Gieskes, F. Colijn, J.W. Hofstraat, L. Peperzak and M. Veenhuis, 1993. Immunochemical identification of toxic marine algae: first results with Prorocentrum micans as a model organism. In: Toxic phytoplankton blooms in the sea, Smayda, T and Y. Shimizu, Elsevier, Amsterdam, The Netherlands, pp. 925-931
  45. Zardoya, R., E. Costas, V. Lopez-Rodas, A. Garrido-Pertierra and J.M. Bautista, 1995. Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences. J. Mol. Evol., 41: 637-645