DOI QR코드

DOI QR Code

Kinetics of Oxidation, and Effects of TiC on Oxidation Resistance in MgO-Carbon Refractory

MgO-Carbon 내화물의 산화반응기구와 TiC첨가에 의한 산화방지 효과

  • 천승호 (경남대학교 신소재공학부) ;
  • 공현식 (경남대학교 신소재공학부) ;
  • 전병세 (경남대학교 신소재공학부)
  • Published : 2004.09.01

Abstract

The kinetics of oxidation and disappearance of graphite in MgO-C refractories containing TiC were, in the temperature range from 1000 to 1200$^{\circ}C$, investigated to enhance the oxdation resistance of MgO-C refractproes. The air was blown into the furnace at flow rate of 0.2 litters per minute, and then weight decrease was measured with a thermo balance at 30 seconds intervals until the value of weight became unchanged. The value of effective diffusion coefficient (De) for the specimen of MgO-C was 1.39${\times}$10$\^$-4/ ㎡/sec. The diffusion of oxygen through decarburized layer was the rate deforming step in the overall oxidation process under present experimental conditions. The TiC additions enhanced the oxidation resistance of the MgO-C refractories.

마그카본계 내화물의 산화저항성을 증대시키기 위하여 섭씨 100$0^{\circ}C$에서 120$0^{\circ}C$에서 산화기구를 조사하고, TiC를 첨가하여 산화저항성 증가에 대한 효과를 관찰하였다. 산소공급을 위해 공기를 분당 0.2리터의 속도로 흘려주었으며 열천칭으로 무게변화가 없어질 때까지 매 30초 간격마다 무게감소를 측정하였다 본 실험에서 사용된 마그카본계 시편의 산화거동과 관련한 유효확산 계수는 1.39${\times}$$10^{-4}$ $m^2$/sec이다. 이러한 실험조건에서 총체적인 산화공정은 산화된 기공층을 통하여 내부로 향하는 산소의 확산에 의해 지배되는 반응으로 해석할 수 있다. TiC를 첨가한 시편은 마그카본계 내화물의 산화 저항성을 증대시켰다.

Keywords

References

  1. S. C. Carniglia, 'Limitations on Internal Oxidation-Reduction Reactions in BOF Refractories,' Am. Ceram. Soc. Bull., 52 [2] 160-65 (1973)
  2. K. Tabata, H. Nishio, and K. Itoch, 'A Study on OxidationReduction Reaction in MgO-C Refractories,' Taikabutsu Overseas, 8 [4] 3-10 (1988)
  3. O. S. Ozgen and B. Rand, 'Kinetics of Oxidation of the Graphite Phase in Alumina-Graphite Materials: I. Effect of Temperature and Initial Pore Structure at a Fixed Graphite Content,' Br. Ceram. Trans. J., 84 [2] 70-6 (1985)
  4. O. S. Ozgen and B. Rand, 'Kinetics of Oxidation of the Graphite Phase in Alumina-Graphite Materials: II. Materials with Different Graphite Content, Graphite Flake Size and with Clay or Carbon Bonds,' Br. Ceram. Trans. J., 84 [6] 213-18 (1985)
  5. K. Ichikawa, H. Nishio, and Y. Hoshiyama, 'Oxidation Test of MgO-C Bricks,' Taikabutsu Overseas, 14 [1] 13-9 (1994)
  6. K. L. Komarek, A. Coucoulas, and N. Klinger, 'Reaction between Refractory Oxides and Graphite,' J. Electrochem. Soc., 110 [7] 783-91 (1963) https://doi.org/10.1149/1.2425873
  7. R. J. Leonard and R. H. Herron, 'Significance of OxidationReduction Reactions within BOF Refractories' J. Am. Ceram. Soc., 55 [I] 1-6 (1963)
  8. X. Li and M. Rigaud, 'Anisotropy of the Properties of Magnesia- Graphite Refractories: Linear Thermal Change and Carbon Oxidation Resistance,' J. Can. Ceram. Soc., 62 [3] 197-205 (1993)
  9. X. Li, M. Rigaud, and S. Palco, 'Oxidation Kinetics of Graphite Phase in Magnesia-Carbon Refractories,' J. Am. Ceram. Soc., 78 [4] 969-71 (1995 )
  10. X. Li and M. Rigaud, 'Effect of Graphite Quality on Oxidation and Corrosion Resistance of Magnesia-Carbon Refractories, in: M. Rigaud, C. Allaire(Eds.),' Proceeding of the Second International Symposium on Advances in Refractories for the Metallurgical Industries, Canada, Ecole Polytechnique, Montreal, Quebec, Canada, pp. 95-107 (1996)
  11. M. A. Faghihi-Sani and A. Yamaguchi, 'Oxidation Kinetics of MgO-C Refractory Bricks,' Ceram. Int., 28 835-39 (2002) https://doi.org/10.1016/S0272-8842(02)00049-4
  12. H. Sunayama and M. Kawahara, 'Mechanism of Oxidation of MgO-C Refractory by Carbon Dioxide," Proceedings UNITECR 2003 Congress, 8th Biennial Worldwide Conference on Refractories, Osaka, Japan, 509-12 (2003)
  13. A. Yamaguchi,'Behaviors of SiC and Al Added to Carbon Containing Refractories,' Taikabutsu, 35 [11] 617-22 (1983)
  14. H. Shibata, M. Kondo, and S. Kashio, 'Study of Wear Mechanism of Bottom Refractories for Torpedo Ladle,' Taikabutsu, 36 [4] 193-201 (1984)
  15. O. Y. Lee, Y. G. Lee, and B. S. Jun, 'Preparatios of ASC Refractory Materials from Kaolin Using Therrnite Reaction,' j. Kor. Ceram. Soc., 32 [4] 429-35 (1995)
  16. H. Kyoden, H. Nishio, K. Ito, and S. Horita, 'Behavior of Metals Added to Carbon Containing Refractories,' Taik-abutsu, 38 [4] 12-20 (1986)
  17. T. H. Choi and B. S. Jun, 'Wear Mechnism of MgO-C Refractory with Therrnite Reaction Products of MgO and AI,' J. Kor. Ceram. Soc., 33 [7] 832-38 (1995)
  18. S. Zhang and W. E. Lee, 'Influences of Additives on Corrosion Resistance and Corroded Microstructures of MgO-C Refractories,' J. Eur. Ceram. Soc., 21 2393-405 (2001) https://doi.org/10.1016/S0955-2219(01)00208-4
  19. S. Tamura, T. Ochiai, S.Takanaga, T. Kanai, and H. Nakamura,'The Development of the Nano-Structural Matrix,' Proceedings UNITECR 2003 Congress, 8th Biennial Worldwide Conference on Refractories, Osaka, Japan, pp. 517-20 (2003)
  20. S. Takanaga, T. Ochiai, S. Tamura, T. Kanai, and H. Naka-mura, 'The Application of the Nano-Structural Matrix to MgO-C Bricks,' Proceedings UNITECR 2003 Congress, 8th Biennial Worldwide Conference on Refractories, Osaka, Japan, pp. 521-24 (2003)
  21. D. Gozzi, G. Guzzardi, M. Montozzi, and P. L. Cignini, 'Kinetics of High Temperature Oxidation of Refractory Carbides,' Solid State Ionics, 101-103 1243-50 (1997) https://doi.org/10.1016/S0167-2738(97)00413-X

Cited by

  1. Study on the Corrosion Characteristics in the Slag Line of SEN Oxide Refractory vol.24, pp.1, 2014, https://doi.org/10.3740/MRSK.2014.24.1.53
  2. Studies on Damage Properties of MgO-C Refractories through Hertzian Indentation at Room and High Temperatures vol.56, pp.1, 2019, https://doi.org/10.4191/kcers.2019.56.1.09