DOI QR코드

DOI QR Code

Synthesis of Concentrated Silver Nano Sol for Ink-Jet Method

잉크젯용 고농도 은 나노 졸 합성

  • 박한성 (충남대학교 재료공학과) ;
  • 서동수 (충남대학교 재료공학과) ;
  • 최영민 (한국화학연구원 화학소재부) ;
  • 장현주 (한국화학연구원 화학소재부) ;
  • 공기정 (한국화학연구원 화학소재부) ;
  • 이정오 (한국화학연구원 화학소재부) ;
  • 류병환 (충남대학교 재료공학과)
  • Published : 2004.09.01

Abstract

The synthesis of highly concentrated silver nano sol assisted by polymeric dispersant (polyelectrolytes) for inkjet method was studied. The silver nano sol was prepared with AgNO$_3$, polyelectrolytes (HS5468cf ; polyacrylic ammonium salt), and reducing agent. The polyelectrolytes play an important role in formation of complex composed of Ag$\^$+/ion and carboxyl group (COO$\^$-/), result in preparation of highly dispersed silver nano particles. The optimization of added amount of polyelectrolytes, and concentration of silver nano sol was studied. The silver nanoparticles were evaluated by XRD, particle size/zeta potential analyzer and FE-TEM. The silver nanoparticles with the range of 10 nm in diameter were produced. The concentration of batch-synthesized silver nano sol was possible up to 40 wt%.

플라즈마 디스플레이(Plasma Display Panel)의 도전성 전극 성형에 필요한 잉크젯용 은 나노 졸을 합성하고자, 액상 환원법에 의해 고농도의 은 나노 졸의 입자크기 및 입도분포와 분산성을 제어하였다 이를 위하여 생성된 입자에 분산성을 부여하는 고분자 전해질의 착체형성 비율과 함께 은 나노 졸의 고농도화를 진행하였다. 합성된 졸은 XRD, 입도분포측정기, TEM을 사용하여 상분석 및 입자의 크기와 형상을 관찰하였다 그 결과 분산성이 우수하고, 약 10nm의 입자크기를 갖는 은 나노 졸인 것을 확인할 수 있었으며, 10-40wt% 범위의 고농도 은 나노 졸을 합성할 수 있었다.

Keywords

References

  1. S. Sakamoto and Y. Ogawa, 'Screen Printing for Fabrication of PDPs,' Proceedings of the 2nd International Display Workshops, 1 41-6 (1995)
  2. M. Furusawa, T. Hashimoto, M. Ishida, T. Shimoda, H. Hasei, T. Hirai, H. Kiguchi, H. Aruga, M. Oda, N. Saito, H. Iwashige, N. Abe, S. Fukuta, and K Betsui, 'Late-News Paper: Inkjet-Printed Bus and Address Electrodes for Plasma Display,' SID 02 DIGEST, 753-55 (2002)
  3. K. Torigoe, Y. Nakajima, and K Esurni, 'Preparation and Characterization of Colloidal Silver-Platium Alloys,' J. Phys. Chem., 97 8304-09 (1993) https://doi.org/10.1021/j100133a029
  4. H. J. Kim and J. H. Park, 'Crystallization of $SrAl_2O_4$ Synthesized by Polymerized Complex Method,' J. Kor. Ceram. Soc., 41 [6] 439-43 (2004) https://doi.org/10.4191/KCERS.2004.41.6.439
  5. R. C. Johnson, J. Li, J. T. Hupp, and G. C. Schatz, 'Hyperrayleigh Scattering Studied of Silver, Copper, and Platinum Nanoparticle Suspension,' Chem. Phys. Lett., 356 534-40 (2002) https://doi.org/10.1016/S0009-2614(02)00407-4
  6. T. Dng, M. Giersig, D. Dunstan, and Mulvaney, 'Spectroelectrochernistry of Colloidal Silver,' Langmuir, 13 [6] 1773-82 (1997) https://doi.org/10.1021/la960863z
  7. K.-S. Chou and C.-Y. Ren, 'Synthesis of Nanosized Silver Particles by Chemical Reduction Method,' Mater. Chem. Phys., 64 241-46 (2000) https://doi.org/10.1016/S0254-0584(00)00223-6
  8. L. M. Bronstein, O. A. Platonova, A. N. Yakunin, I. M. Yanovskaya, and P. M. Valetsky, 'Complexes of Polyelectrolyte Gels with Oppositely Charged Surfactants : Interaction with Metal Ions and Metal Nanoparticle Formation,' Langmuir, 14 [2] 252-59 (1998) https://doi.org/10.1021/la970527y
  9. Y. Li and T. Ishigaki, 'Thermodynamic Analysis of Nucleation of Anatase and Rutile form Ti $O_2$ Melt,' J. Cryst. Growth, 242 511-16 (2002) https://doi.org/10.1016/S0022-0248(02)01438-0
  10. L. Brecevic, 'Crystal Growth Kinetics and Mechanisms' Encyclopedia of Surface and Colloid Science, 1289-99, Marcel Dekker, New York, Ed. by Arthur T. Hubbard (2002)
  11. J. S. Reed, 'Introduction to the Principle of Ceramic Processing,' John Willey & Sons, New York, Chap. 10, 132-51 (1988)
  12. B. D. Cullity,'Elements of X-Ray Diffraction, 2nd Edn., Addison-Wesley Publishing Co., Inc., London, 122 (1978)
  13. H.-L. Wen, Y.-Y. Chen, F.-S. Yen, and C.-Y. Huang, 'Size Characterization of $\theta$ - and $\alpha-Al_2O_3$ Crystallites During Phase Transformation,' Nanostructured Mater., 11 [I] 89-101 (1999) https://doi.org/10.1016/S0965-9773(99)00022-7