Sole-Carbon-Source Utilization Patterns of Oligotrophic and Psychrotrophic Bacteria Isolated from Lake Baikal.

바이칼호에서 분리한 빈영양성 세균과 저온성 세균의 탄소원 이용 특성

  • 이건형 (군산대학교 자연과학대학 과학기술학부) ;
  • 배명숙 (군산대학교 자연과학대학 과학기술학부) ;
  • 박석환 (군산대학교 자연과학대학 과학기술학부) ;
  • 송홍규 (강원대학교 자연대학 생명과학부) ;
  • 안태석 (강원대학교 자연대학 환경학과)
  • Published : 2004.09.01

Abstract

To scrutinize the physiological diversity by BIOLOG microplate, the carbon source utilization patterns of 168 strains of oligotrophic bacteria and 132 strains of psychrotrophic bacteria isolated from Lake Baikal during 2000 and 2002 were investigated. Eighty-six percent (56 strains) of oxidase test positive group (GN-NENT group) and 89 % (92 strains) of oxidase test negative group (GN-ENT group) among oligotrophic bacteria, and 82% (85 strains) of oxidase test negative group among psychrotrophic bacteria were able to utilize $\alpha$-D-glucose as a sole-carbon-source, and 93% (26 strains) of oxidase test positive group among psychrotrophic bacteria were able to utilize bromosuccinic acid as a sole-carbon-source. However, most strains except few oligotrophic bacteria with oxidase test negative group were not able to utilize $\alpha$-D-lactose as a sole-carbon-source. Most dominant genus among 300 strains was Pseudomonas (49 strains). Other dominant genera belonged to Salmonella, Serratia, Buttiauxella, Pantoea, Yersinia, Brevundimonas, Hydrogenophaga, Photorhabdus, Sphingomonas, and Xenorhabdus. Our results by BIOLOG identification system were able to provide basic data to determine community-level carbon source utilization patterns and to accomplish the efficient and reliable identification for microbial community structure in Lake Baikal.

2000년 9월부터 2002년 12월 사이에 바이칼호에서 분리된 빈영양성 세균 168균주와 저온성 세균 132균주를 대상으로 BIOLOG Microplate를 이용하여 탄소원의 이용특성을 조사하였다. 본 연구에 사용된 빈영양성 세균 중 oxidase 양성 (GN-NENT 그룹)의 86% (56균주)와 oxidase음성 (GN-ENT그룹)의 89% (92균주), 저온성 세균 중 oxidase 음성 (GN-ENT 그룹)의 82% (85균주)는 다앙한 탄소원 중에서 $\alpha$-D-glucose를 이용할 수 있었으며, 저온성 세균 중 oxidase 양성 (GN-NENT 그룹)의 93% (26 균주)는 bromosuccinic acid를 이용하였다. $\alpha$-D-lactose는 빈영양성 GN-ENT 그룹의 일부만이 이용하였으며 나머지 균주들은 전혀 이용하지 못하였다. BIOLOG Microplate를 이용하여 동정된 균들을 속별로 살펴보면, Pseudomonas속이 49균주로 가장 많았으며, 그 외에도 Salmonella 속, Serratia속, Buttiauxella 속, Pantoea 속, Yersinia 속, Brevundimonas 속, Hydrogenophaga 속, Photorhabdus 속, Sphingomonas 속, Xenorhabdus 속이 동정되었다.

Keywords

References

  1. 송경자, 이오형, 최문술, 이건형, 2002. 불가사리 (Asterias amurensis) 장내에서 분리된 종속영양세균의 탄소원 이용 특성. 미생물학회지 38, 57-61
  2. 송인근, 안영범, 신규철, 조홍범, 최영길. 1999. 토양세균 군집의 유일 탄소원 이용에 의한 지문분석. 미생물학회지35, 65-71
  3. Bell, C.R., M.A. Holder-Franklin, and M. Franklin. 1982. Correlations between dominant heterotrophic and physico-chemical water quality factors in two Canadian rivers. Appl. Environ. Microbiol. 43, 269-283
  4. Chen W.M., T.M. Lee, C.C. Lan, and C.P. Cheng. 2000. Characterization of halotplerant rhizobia isolated from root nodules of Canavalia rosea from seaside areas. FEMS Microbiol. 34, 9-16
  5. Choi, K.H. and F.C. Dobbs. 1999. Camparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J. Microbiol. Methods. 36, 203-213
  6. Christian, R.R. and D.G. Capone. 1997. Overview of issues in aquatic microbial ecology, pp. 245-251.In Hurst, C.J. (ed.), Manual of Environmental Microbiology. ASM Press
  7. Chrost, R.J. 1991. Environmrntal control of the synthesis and activity of aquatic microbial ectoenzymes, pp. 29-59. In Chrost, R.J (ed.), Microbial Enzymes in Aquatic Environments. Springer- Verlag
  8. Haack S.K., H. Garchow, M.J. Klug, and L.J. Forney. 1995. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl. Environ. Microbiol. 61, 1458-1468
  9. Garland, J.L. and A.L. Mills, 1991. Classification and character- ization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351-2359
  10. Kozhova, O.M. and L.R. Izmest'eva, 1998. Lake Baikal: Evolution and biodiversity. pp. 3-80. Backhuys Publishers, Leiden. The Netherlands
  11. Nagata, T., K. Takai, K. Kawanabe, D.-S. Kim, R. Nakazato, N. Guselnikova, N. Bondarenko, O. Mologawaya, T. Kostrnova, V. Drucker, Y. Satoh, and Y. Watanabe, 1994. Autotrophic picoplankton in southern Lake Baikal: abundance, growth and grazing mortality during summer. J. Plankton Res. 16, 945-959
  12. Pielou, E.C. 1984. The interpretation of ecological data. Wiley & Sons, N.Y
  13. Rheinheimer, G. 1985. Aquatic Microbiology. pp. 21-39. John Wiley & Sons, Chichester, New York, Brisbane, Toronto
  14. Simberloff, D. and T. Dayan. 1991. The guild concept and the structure of ecological community. Ann. Rev. Ecol. System. 22, 115- 143
  15. Solit, R. 1999. BIOLOG: MicroLog$^TM$ System, Release 4.0 user guide. Biolog Inc., USA
  16. Winding, A. 1993. Fingerprinting bacterial soil communities using Biolog microtiter plates. p. 85-94. In Abstracts of the 94th General Meeting of the American Society for Microbiology 1994. American Society for Microbiology. Washington, D.C
  17. Zak, J.C., M.R. Willig, D.L. Moorhead, and G. Wildman. 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem. 26, 1101-1108