YA LE ZErAdS

o] &3 WA

XA 22288 0|88

o] =EAME NAY AZEYY 4% IS Uit AEE & v g2 Z2RMH AZE HE AQh dALE ZrEA

< zz2a3 e wxg H2

Azt Wy 9 dhtolrh AdE WdAME

(trace)& &
Ax2E ZZRA 7PE H4drh o) o] HAHste dide] =
nng Efolag gAste] dAxE H2 Ao ¥EE AS

= At WA

A YALE g AT A0 gAEHD ol2RE ATRdE I& 5 Utk Al
MediaBench$} DSPStone WX|v}2& olg3le] A¥g A% ARMI MCORE Z2A|A| thate] ztzk BF 14%9}

& Asdeol H4w F

18%9] 45FEE 48 £ A+

A4Hmemory access)S #|A2~E H
Z2 9 Y (profiling) & F3te] Foid
th aglm 7 e a8 S Uik oy AR 22 4 3% I8 M
A el
3 AelEE 2Y F e R J2 9
Audele F4DA Z=F FAS ZERA HALHE €9

AHregister access)22 HHFolM Tzl Ay F4E

73]..‘:. 3]
HellAe] mlze F2 ikl g Edelx
A g5 dAYste] Agd
PEREEE R
et golzl W= g
get olgh T2 HAS AA wrd H2 Gl TER
4 ARM# MCORE Z=2AA

A FE

+8 2024 A ARE 39 4 9
o

Qg A2 Z2RA 7Y

Performance Enhancement of Embedded Software
Using Register Promotion

Jong-Yeol Lee'

ABSTRACT

In this paper, a register promotion technique that translates memory accesses to register accesses is presented to enhance embedded software
performance. In the proposed method, a source code is profiled to generate a memory trace. From the profiling results, target functions with
high dynamic call counts are selected, and the proposed register promotion technique is applied only to the target functions to save the compila-
tion time. The memory trace of the target functions is searched for the memory accesses that result in cycle count reduction when replaced
by register accesses, and they are translated to register accesses by modifying the intermediate code and allocating promotion registers. The
experiments on MediaBench and DSPstone benchmark programs show that the proposed method increases the performance by 14% and 18%

on the average for ARM and MCORE, respectively.

WEe AZEY0(Embedded Software), HZ2l 2
2 (Profiling), HIXIAE ZTZBM(Register Promotion)

IIfiE:

1. Introduction

In embedded systems based on programmable process-
ors, high-level language compilers play an important role
in the system design process. While assembly-level pro-
gramming is still important to achieve optimized codes,
high-level programming gains more and more acceptance
for embedded processors to permit shorter design cycles,
higher productivity and dependability, and higher oppor—

A (Memory Access), BIXIAE] EZ HAt

(Register Access), T2}

tunities for reuse. However, the code generated by com-
pilers usually implies an overhead in code size and perform-
ance as compared to the hand-optimized assembly code.
Although this overhead is acceptable in general-purpose
computing, it is often not allowed for embedded systems.

In order to minimize the overhead, embedded compilers
have to pay higher attention to code optimization for both
small code size and short execution time. As a consequence,
a number of code optimization techniques have been devel-
oped for embedded processors. Most of these are low-level
optimizations that exploit the detailed knowledge of the

processor architecture to optimize machine code. For ex-
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ample, many low-level techniques were developed for code
selection, register allocation, and scheduling [1-3], memory
access optimization [4], and optimization of address compu-
tations [5, 6].

Since register allocation is one of the most important
functions required in an optimizing compiler, many pre-
vious works such as [7] have dealt with this important
problem. Most of the works mainly focused on the register
allocation for scalar variables. Furthermore, they treat non—
scalar variables in a particularly naive fashion, making it
impossible to determine when a specific element might be
reused. Due to the incapability, conventional compilers allo-
cate memory locations for global variables, structure, array
and union variables. This is true even with highest op-
timizations. For example, when compiling a source code
using GNU C Compiler (GCC) [11], such variables are allo-
cated to memory even with “~O3” that is the highest opti-
mization option. The structure and array variables are allo—
cated to memory since they are treated as a whole. Compi-
ler optimizations do not usually treat the fields of structures
and the elements of arrays as separate variables. In case
of global variables, they are allocated to memory because
they can be accessed in two or more functions and registers
cannot be allocated beyond function boundary. For array
variables, the previous works have focused on the depend-
ency analysis of array variables used in loops. In [8], a rep-
resentation method of array access patterns and a depend-
ency analysis were presented without considering a regis-
ter allocation. In other works, [9] and [10], pointer analysis
was exploited to treat pointer-valued variables and arrays
in C. As the pointer analysis used in the works was simple,
their results were not as good as we expected. Comple-
mentary to previous register allocation techniques, in this
paper, we present a code optimization that employs register
promotion to achieve higher performance. Register promo-
tion is to translate frequently accessed memory locations
to register accesses, and can be regarded as an optimization
because instructions generated to access data objects in
registers are more efficient than the case that the objects
are in memory. We need to determine which variables can
be safely kept in registers and to rewrite the code to keep
the found variables in registers. Based on the results of
profiling, the proposed register promotion technique identi—
fies code sections in which it is safe to place the value of

a data object in a register, and then promotes memory loca-

tions that are frequently accessed in the code segments to
registers. As the register promotion is independent of the
type of variables, it can be applied to non-scalar variables
as well as scalar ones.

The rest of this paper is organized as follows. In Section
2, a motivating example is given and the proposed register
promotion is described. After showing the experimental re-

sults in Section 3, conclusions are addressed in Section 4.

2. Register Promotion

An example of register promotion is shown in (Figure
1), where memory is allocated for array variables, A and
B. In (Figure 1)(b), registers, RO~R3, are reserved for
function arguments and are not allocated in register allo-
cation. Registers, R4~R13, are used in register allocation
and the remaining two registers, R14 and R15, are used
as stack pointer and link register, respectively. We can see
that two registers, R4 and R5, are allocated for local varia-
bles, i and j. R6~R13 are free registers that are not

allocated.
) ) . RO !

10 for (i=0;i<D1;it4); R Reserved for function

2 for (j=0;j<D2;j++) { arguments

3 All = Afi +B[I}; R2

4: } R3

5} R4 i | Register allocated
R5 j | foriandj

(a) R6

R7
R8 Free registers
R9 not allocated

10 for (j=0;j<D2Z;j++){ R10

2: temp = A[j] ; R11

3. for (i=0;i<D1;i++){

4 temp=temp+BI(i}; R12

5: R13

6. All=temp: R14 | Stack pointer

7: } R15 | Link pointer

(c) (b)

(Figure 1) Example of register promotion (a) C source code
(b) Register allocation result (¢) Source code rep-
resentation of a transformation for register promotion

Although there are free registers, memory locations are
allocated for the arrays as a result of the inability of com-
pilers stated as above. In (Figure 1)(a), we can see that
the element of A accessed multiple times in the inner loop
is independent of the index of the inner loop. Therefore,
by moving the value of the element into a scalar variable
before the inner loop and restoring the variable back to the
memory location after the inner loop, we can replace the

memory access in the inner loop by a register access. The



source code representation of the result after a trans—
formation for register promotion is shown in (Figure 1){c),
where a new temporary scalar variable that will be allo—-
cated to a register is added.

In this paper the performance of the register promotion
is determined in terms of cycle count and code size. The
cycle count represents the number of cycles taken when
an operation is executed. In some machines the cycle count
includes preliminary cycles consumed in preparing a target
address for a memory operation. The total execution time
of a program can be calculated by multiplying the cycle
count and clock cycle time. Therefore, for a given machine
where the clock cycle time is fixed, we can compare the
execution times by comparing the cycle counts.

The cycle counts, TCeepre, before the register promotion
can be estimated as follows with assuming the cycle counts
of memory accesses, G- and Gy, are two and that of addi-

tion, Cadq, iS oOne.

Biupre=2% C,+1x Cog+1x Cp=1 (1)
cheforeszeforexDlxD2=7XDIXDZ (2)

where Begure is the estimated cycle count of the loop body.
C:r and C, are the numbers of cycles consumed when a
memory read operation and a memory write operation are
executed, respectively. The values include the cycles re-
quired to generate the address for a target memory location
in ARM for example.

After the register promotion, since the memory access,
the access to Aljl, is replaced by a register access, the ac-
cess to temp, the total cycle count, TCuqer, is calculated as

follows.
Bafter:]- X C‘r—f_l>< Cadd=3 (3)
Tca/ter = D1x [lxcr‘f‘ D2 xBafter +1 ch]
= 4xD; + 3xD1x D2 )
chefore_ Tca/[er = 4XD1 X (Dz — 1) (5)

By calculating the difference of two total cycle counts,
T Coefore and TCyrer, as shown in equation (5), we can know
whether the register promotion is effective or not. It should
be noted that we describe for clear understanding as if the
source code is modified directly. In the real implementation,
the modification is applied to the intermediate code of com-
pilers such as the RTL of GCC. Therefore, the source code
is never changed but the intermediate code generated after
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parsing the source code is modified to account for the reg-

ister promotion to be accommodated.

Soruce dynamic finding m‘:g:‘:;yrg';atce
code £ Profiling call count target b functions
P a functions

Intermediate
code find memory
Modification accesses for mt?::::y
& promotion register -
i i parsing
register promotion

allocation

(Figure 2) Overview of the proposed register allocation
method

The technique proposed in this paper performs register
promotion for non-scalar variables in a systematic way.
(Figure 2) shows the overall flow of the proposed method.
In the proposed method, the information needed for the op-
timizations is obtained by profiling the source code. The
advantage of profiling is that it can produce more accurate
result than the static analysis such as pointer analysis. For
register promotion, memory trace is generated and ana-
lyzed to find memory locations accessed frequently. They
can be replaced with register accesses to reduce cycle
count. After finding such memory locations, the inter-
mediate code is modified to move the data in the memory
locations to promotion registers reserved for register
promotion. Note that, in the proposed method, pointers can
be optimized without using pointer analysis because mem-

ory trace is used.

2.1 Source Code Profiling

As the first step of register promotion, the source code
is profiled to find target functions to which register promo-
tion is applied. To maximize the effect of register promotion
and reduce the compilation time, the only functions with
a high dynamic call count are considered.

For the profiling, instruction-set simulators are modified
to report dynamic calls and generate memory trace. The
address and program counter (PC) values are dumped for
each load or store instruction with a field indicating the
type of memory operation (load or store).

An advantage of the profiling is that the number of func-
tions to be considered in the optimization routine is reduced
by selecting only the functions called frequently. As can
be seen in (Figure 3), most of dynamic function calls are

dedicated to only a small portion of the whole functions.
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As a consequence, significant improvement can be achieved
with applying optimizations to the heavily—called functions.
In our experience, only one or two functions take 95% of
total dynamic calls in all the benchmarks used in the ex-
periments. Another advantage is that better results than
static pointer analysis can be obtained in the presence of
pointers because the aliasing problem can be eliminated by

analyzing addresses in the memory trace.

Cumulative fraction of dynamic calls

100%

—o— ADPCM
-&@- EPIC

80% | _a- G721
—¢ GSM
o || - JPEG
60% —-o- MPEG2
—— PEGWIT
40% //- /

20%

0%
0 0.1 02 03 04 05 06 07 08 09 1

Fraction of total functions

(Figure 3) Distribution of dynamic function calls. The Y axis
shows the cumulative fraction of dynamic function
calls and 10% of functions take 90% of total dy-
namic function calls

2.2 lteration Tree Construction

The memory trace of heavily executed functions is parsed
to find whether register promotion can increase per-
formance. The first step of the implemented memory trace
parser reads the trace into memory and the following steps
are performed on the trace in memory because file 1/0 is
the most time-consuming task.

In memory trace parsing, for each memory access in the
intermediate code, a corresponding memory address is
found. This is achieved by inserting debugging information
into the executable when compiling the source code. A
source-level debugger uses the debugging information to
find source lines corresponding to a given PC value. In the
proposed method the debugging information is used to map
a PC value to a memory operation in the intermediate code.

In addition, loops can be found by examining PC values
in trace and debugging information. For the found loops,
an iteration tree is constructed where nodes represent in—-
stances of loop iterations. Each node has a pointer to a loop
and the index value of the corresponding iteration. (Figure

4) shows an iteration tree example. In (Figure 4)(b), the

nodes, i0, i1, and i2, represent the iterations of the out-
er-most loop whose index variable is 1. For a loop without
an index variable a pseudo index variable is inserted. For
example, the inner-most loop in (Figure 4) is a while loop

that has no index variable. The iterations of the while loop

with a pseudo index variable, k, are shown at the leaf nodes
of (Figure 4)(b).

1:
2:
3:
4:
§:
6:
7:
8:
9:

for (i=0;i<2;i++) {
for(j=0;j<1j++) {
ptr=array[j];
while (*ptr) {
*ptr="*ptr + B[ j] + C[i] + str.field++;
ptr++;

Level 1

Leve! 2

(b)
(str.field, 0)

{strfield, 0) (B[0], 4)

(B[0), 4) (C[0), 4)
(str.field, 0) e
(810), 0) (str.field, 0)
(clol, 0) ‘B[‘:]' 4 (strfield, 0)

(str.field, O (C[1},0) (B[0], 4)

(B[1}, 0)

(CI2], 0)
(C[01, 0) f

array[0] array[1] array[2] array{1] array[2] array[3]
B{0] B[0] B{0] Bi1l B[1] B[1]
cop  clol  co clo] ¢ cig
strfield strfield strfield str.field str.field strfield

(c)

(d)

(Figure 4) lteration tree (a) An example source code (b) An
iteration tree (¢) CAS calculation (d) An iteration
tree after loop interchanging

2.3 Code Generation
The next step is to find the memory accesses to be pro—-
moted to register accesses by examining the iteration tree.

The candidate memory accesses for register promotion are



the accesses whose addresses are constant over all the iter-
ations of a loop. We assume that each memory address is
associated with a PC value. To find candidate memory ac—
cesses, the nodes are levelized by their distance to the root
node. For the iteration tree of (Figure 4)(b), the first-level
nodes are i0, il and i2. A canonical address set (CAS) is
calculated for a node. If memory addresses with the same
PC value have a uniform stride, the addresses are called
canonical in this paper and can be represented as a form
of (starting address, stride). The CAS of a leaf node con-
tains all of the memory addresses accessed in the iteration
corresponding to the leaf node, as there is one memory ac-
cess for a PC value. As in this case, it is difficult to define
the stride, but we assume every memory address has a uni-
form stride initially. Therefore, a CAS contains only canon-
ical addresses, which means a set of memory addresses
that have the same PC but do not have a uniform stride
is not considered in register promotion. A CAS of a
non-leaf node is calculated as CAS, e {e CAS:}, where e
is an operator that finds the canonieal addresses, CAS, is
the CAS of the non-leaf node and CAS; is the CAS of an
immediate descendant of the non-leaf node. An example
of CAS calculation is shown in (Figure 4)(c), where each
leaf node has memory accesses in the corresponding iter—
ation and non-leaf nodes have their CASs. The CAS of
i0 contains (B[0], 4) that is calculated from (B[0], 0) in the
CAS of jO and (B[1], 0) in the CAS of jl. Since in the de-
scendants of i0, B[0] and B[1] are accessed in sequence,
the stride is four, which is the size of elements in B.

How to find candidate memory accesses is explained us—
ing an example. Let Al, A2, and A3 be canonical addresses
in the CASs of i0, i1 and i2, respectively, in (Figure 4)(b).
When the following equation holds

A2 - Al=A3-A2=d (6)

and the number of traces is equal to the statically de-
termined number of iterations, the addresses in iterations

can be represented as an arithmetic series

Al=Al+dx0 7
A2=Al+dx1 ®
A3=Al+dx2 9

In general, if all the differences of two consecutive ad-

dresses are identical, the addresses form an arithmetic series
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and the address in i-th iteration can be represented as a gen—

eral term,
A=Al +dxi (10)

where Al is the address in the first iteration and d is a stride.

If the stride of memory addresses associated with the
same PC value is zero in equation (10), that is, memory
addresses are constant, the corresponding memory ac-
cesses might be replaced by register accesses with addi-
tional load and store instructions. The additional instruc-
tions are placed outside the loop corresponding to the level
on which the general term is calculated. If equation (10)
holds for the first-level CASs in (Figure 4)(b) with a zero
stride, a load instruction and a store instruction from/to the
canonical address are placed before and after the out-
er-most loop, respectively. When d is not zero, the address
changes with a equal stride, d. In this case, the address
can be efficiently implemented by using auto-increment or
auto-decrement addressing mode.

In some cases more cycle count reduction can be achieved
by interchanging loops. When two or more nodes have the
same name in a level and the CASs of the nodes have com-
mon canonical addresses, by interchanging the loops corre-
sponding to the level and its upper level the constant ad—
dresses can be used in register promotion resulting in cycle
count reduction. If CASs of j0s in (Figure 4)(b) have the
same constant address, Al, and j1s also have the same con—
stant address, A2, by interchanging the first and second
loops corresponding to Level 1 and Level 2, respectively,
the canonical addresses will be found at Level 1. As canon-
ical addresses are found in the upper level after the loops
are interchanged, the additional load and store instructions
are inserted at outer position, and hence, the amount of cy-
cle count increased by the instructions can be reduced in
the modified code. The iteration tree with the loop inter-
changing is shown in (Figure 4)(d).

After finding candidate memory accesses for register
promotion, we can calculate the cycle count difference he~
tween the original code and the register promoted code by
taking into account the execution counts of the loops and
functions. If the difference is positive, register promotion
is applied and the memory accesses are replaced by register
accesses.

The first step of the replacement is to modify the inter-
mediate code. In this step, additional variables are defined
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and codes that move values from/to the additional variables
are inserted. (Figure 5) shows the source modification re-
sults of the example code in (Figure 4)(a). At each level
of the iteration tree, we search for the same canonical
addresses. In Level 1 of (Figure 4)(b), the memory access
to str.field is a canonical address. Therefore, a load in-
struction to a temporary variable, templ, and a store in-
struction from the temporary variable are inserted before
and after of the outer-most for loop, respectively. Another
temporary variable, temp3, is used to promote the accesses
to Blj] in (Figure 5)(c) because the addresses of B[j] are

constant over the iterations of the inner-most while loop.

1: temp2=&C[0]:
1: temp1=strfield; 2 : temp1=strfield;
2: for (i=0;i<2;i++){ 3 for (i=0;i<2;i++){
3: for G=0;j<1:i+9{ 4 tempd = *temp2 ;
4 pir =amay [j]; §:  for (=0;j<1;j+4){
5: while ("ptr) { 6: ptr =amay[jl;
6: “ptr =*ptr + B[j ] + C[ i} temp1++; 7 while ("ptr) {
7: pir 4+ 8: “ptr =“ptr + B[j ] + temp4 + temp1++;
8 : } 9: oir ++
9: } 10: }
100} 1"
110 str. fietd = temp1 ; 12: temp2++
13 )
14; str. field = temp1 ;
(@) (b)
1:  temp2=_&C[0]: 1: temp2=&C[0]);
2: temp5=8B[0]; 2 : temp5=8&8[0];
3: templ=strfield; 3 : templs=strfieid:
41 for (i=0;i<2;i+9){ 4 for (j=0;j<1;j++){
5: temp4 = *temp2 ; 7: temp6 = "temp5 ;
6: for §=0;j<1;j+9)( 6 for (i=0;i<2;i+9){
7: tempé = “temp$5 ; 5: temp4 = temp2 ;
8: ptr =amay[j]: 8: ptr =array[j};
9: while (*ptr) { 9: while ("ptr) {
10: *ptr = *ptr + tempB + tempd + temp1++;  10: *ptr = *pir + tomp$ + temp4 + tempt++ ;
11: ptr++; 1 pir++;
12 } 12 }
13: temp$ ; 15: temp2++
14} 14}
15: temp2 ; 13: temp5++
16} 16: }
170 str. field = temp1 ; 17:  str. fiekd = temp1 ;
(0) (@

(Figure 5) Code modification. For clear understanding the mo-
dification results are shown using source codes zin-
stead of the intermediate code on which the mod-
ification is performed (a) The address of a struc-
ture variable, str.field, is constant in the iterations
of all loops (b) The addresses of Cli] form an arith-
metic series with index variable i (¢) Code mod-
ification without interchanging the first two for ioops.
(d) Code modification after interchanging the first
two for loops

The addresses of Cli] in (Figure 4)(a) form an arithmetic
series with the index variable i. The first address is the
address of the first element, C[0]. The difference between
the first and second addresses is C[1] - C[0], which is four
if C is an array of four-byte integers. Therefore, the ad-
dress increases by four at each iteration. The code is modi-

fied by inserting a statement that loads the address to a

temporary variable, temp2. At the end of the first for loop,
the address is incremented by four. In the new statement,
temp2++ 1s used instead of temp2 = tempZ +4 because
temp2++ in C statement is interpreted as the increment of
the address by the size of the array elements. The resulting
code is shown in (Figure 5)(b).

We can calculate the cycle count before and after loop
interchanging shown in (Figure 5)(c) and (d) as follows :

Cbe:fore =3x2x{(M+WxR) (11)
Copter = 2x (M +3x W xR) (12)

where M is the cycle count of a memory access, R is that
of a register access, and W is the number of iterations of
the inner-most while loop. If we assume that the values
of M and R are five and three, respectively,

Coopre™= 30+ 18W (13)
Coor= 10+ 18W 14)

The assumed values are typical values of memory and reg-
ister accesses in ARM7TDMI. In this calculation, the re-
duction in cycle count is about 30% when the inner-most
while loop iterates two times.

In register allocation step, promotion registers that are
special registers dedicated for register promotion are allo-
cated for the compiler-inserted variables, templ and temp3.
In most cases, the promotion registers need not be saved
and restored to preserve their values, since the promotion
registers are not used in general register allocations. If
there are compiler-inserted variables not mapped to pro-
motion registers because of the restricted number of pro—
motion registers, the compiler may allocate free registers
for the variables.

Since the case that all the registers are used in register
allocation is rare in general compilers, some of the registers
can be used for register promotion. If some registers are
dedicated for register promotion, the maximum number of
registers that can be involved in register allocation i$ re-
duced, which may lead to significant effects on the code
size and performance. Therefore, the number of promotion

registers must be determined by investigating such effects.

3. Experimental Results

We implemented the proposed register promotion method
using GCC and performed experiments for ARM and



MCORE. To measure the cycle count variation, ARMulator
and MCORE instruction-set simulator (ISS) are used. As
listed in <Table 1>, benchmark programs used in the ex-
periments are MediaBench [12] and DSPstonel13]. Some of
the programs, DOT_PRODUCT, FIR2DIM, MATRIX_MUL
and STR_SUM use pointers heavily and are included to
show that the proposed method can handle pointers ap-
propriately.

{Table 1> Summary of Benchmark Programs

Benchmark Description
RS Reed-Solomon coder/decoder
STR_SUM Summation of structures
PEGWIT Public key encryption
ADPCM ADPCM coder/decoder
MPEG2 MPEG2 encoder
DOT_PRODUCT | Dot product
FIR2DIM Two-dimensional FIR filter
MATRIX_MUL Matrix multiplication
EPIC Efficient pyramid image coder
G721 CCITT G.721 ADPCM coding algorithm
GSM An implementation of the final draft GSM
06.10 standard

First, we performed experiments to determine the num-
ber of promotion registers. We generated executables by
restricting the number of registers. (Figure 6) and (Figure
7) show the effects of register reduction on the code size
and cycle count for ARM and MCORE, which are obtained
with a modified GCC. In these experiments some selected
benchmark programs are used in order to show the effec-
tiveness of the proposed register promotion when the pro—
gram to be optimized is different from the program used
to determine the number of promotion registers. Based on
the results in (Figure 6) and (Figure 7), we can determine
the number of promotion registers. The amount of code size
increase is less than 19 for both processors until the num-
ber of registers available for register allocation is reduced
by three. However, the register reduction affects cycle
count more significantly. In ARM, the cycle count increases
more than 30% when the number of registers is reduced
by three. In (Figure 6), we can see that reserving two reg—
isters for register promotion in ARM does not impose great
penalty on code size and cycle count. For MCORE, there
is no steep increase in cycle count for three promotion
registers. Therefore, two and three promotion registers are
assigned for ARM and MCORE, respectively.
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We compiled the benchmark programs using the im-
plemented compiler for ARM and MCORE with the de-
termined number of promotion registers. In the experiments,
only one or two functions are selected and the register pro—
motion is applied as summarized in <Table 2>. By applying
the proposed register promotion to the selected functions the
compilation time is reduced as shown in (Figure 8). The re-

duction is calculated as follows.

. . Ta—Ts
Compilation time reduction = — (15)
A
where T4 and Ts are compilation times when the proposed
method is applied to all the functions and only the selected

functions, respectively.

Code size aftes register reduction/original code size
1.009

[ 0riginal
1.007 { E11 register
02 registers
1.005 [ O3 registers 4

1.003 |

1.001

0.999

0.997 .
ADPCM RS STR_.SUM EPIC G721 PEGWIT GSM MPEG2

Benchmark
(a)

Cycle count after register reduction/original cycle count
14

QOriginal
}_ 11 register ]
02 registers

13
1.25 H
12
1.15
1.1
1.08

03 registers

0.95

A L
ADPCM RS STR_SUM EPIC G721 PEGWIT  GSM MPEG2

Benchmark

(b)

(Figure 6) Effects of register reduction in ARM for some se-
lective benchmarks. (a) Code size variable after
register reduction Code sizes are compared by cal-
culating “(code size after register reduction/original
code size)” Code size increases when the number
of available registers is reduced by one, two and
three (b) Cycle count variation after register re-
duction. Cycle counts are compared by calculating
“(cycle count after register reduction/original cycle
count)” Cycle count increases when the number of
available registers is reduced by one, two and three
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Code size after register reduction/original code size

1.009

1.008 | D0riginal M
1 register -
1.007 a reg_
)2 registers
1.006 1 13 registers 1 ’_
1.005 H
1.004 ] H

1.003 H
1.002 — 1

1.001
1 T[DI[ I
0.999 , " L

ADPCM RS STR_SUM EPIC G721 PEGWIT  GSM MPEG2
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(Figure 7) Effects of register reduction in MCORE for some
selective benchmarks (a) Code size variable after
register reduction. Code sizes are compared by cal-
culating “(code size after register reduction/original
code size)”. Code size increases when the number
of available registers is reduced by one, two and
three (b) Cycle count variation after register re-
duction. Cycle counts are compared by calculating
“(cycle count after register reduction/original cycle
count)”, Cycle count increases when the number
of available registers is reduced by one, two and
three

{Table 2) Number of functions to which the register promotion

is applied
Benchmark Number of functions
RS 2
STR_SUM 1
. PEGWIT 2
ADPCM 2
MPEG2 1
DOT_PRODUCT 1
FIR2DIM 1
MATRIX_MUL 1
EPIC 1
G721 1
GSM 1
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(Figure 8) Compile time reduction with function selection. The
compilation time is reduced by selectively applying
the proposed register promotion to the heavily ex-
ecuted functions. The reduction is calculated using
the equation (15)

By executing the generated executables on ARMulator
and MCORE ISS, the cycle counts are measured. (Figure
9) shows the code size and c¢ycle count variation after reg—
ister promotion. The maximum code size increase is about
1% for MCORE, and the code size remains almost constant
in case of ARM. However, the cycle count is reduced for
both ARM and MCORE. The average cycle count reduc-
tions are about 14% and 18% for ARM and MCORE, res-
pectively. The maximum cycle count reductions are 309
and 35% for ARM and MCORE, respectively. (Figure 9) also
indicates that the proposed method can handle pointers ef-
fectively because the average cycle count reductions for
programs that heavily use pointers are about 15.2% and
20.5% for ARM and MCORE, respectively.

Although the proposed register promotion is applied for
two functions in RS, PEGWIT and ADPCM, the amount
of the cycle count reduction is not large compared to other
benchmark programs where the register promotion is ap—
plied for only one function. The proposed register promo-
tion is less effective in RS, PEGWIT and ADPCM because
there are fewer variables that can be promoted to registers
in those programs after previous code optimization such as
register allocation.

In the most cases of (Figure 9), the amount of the cycle
count reduction is higher in MCORE than ARM. This is
because the GCCs ported 0 ARM and MCORE, ARM-
GCC and MCORE-GCC, have different characteristics and
registers are more heavily used in the ARM-GCC gen-
erated codes. That is, there are fewer variables that the
register promotion can be applied to in ARM-GCC gen-
erated codes than in MCORE-GCC generated codes. This



1s most evident in MPEG2 where the cycle count reduction
of MCORE-GCC generated code is two times larger than
that of ARM~GCC generated code. However, in STR_
SUM, PEGWIT, and ADPCM, MCORE-GCC generates
more optimized code than ARM~GCC and hence, the reduc-
tion rate is higher in ARM.
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(Figure 9) Code size variation and cycle count reduction after
register promotion (a) Code size variation. Code
sizes are compared by calculating “code size after
register reduction/Original code size” (b) Cycle count
reduction. Cycle count reductions are compared by
calculating “(Original cycle count - cycle count after
register reduction)/Original cycle count”

Since the proposed register promotion can be applied af—
ter conventional optimization developed in the previous
works such as register allocation, it can be efficiently used
for the optimization of embedded software as a comple-
mentary tool to the previous works as shown the experi-
ments with the embedded software benchmarks, Media—-
Bench and DSPStone. Furthermore, the proposed method
uses the profiling and can register-promote pointers effec—
tively. Another advantage of the register promotion with
profiling is that the proposed method can effectively handle

non-scalar variables such as arrays and structures. In the
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profiling method, the trace of memory accesses are gen-

erated and analyzed to perform the register promotion.

4. Conclusions

In this paper, we have presented a register promotion
technique to enhance performance by moving memory ac—
cesses to register accesses. In the proposed method, a given
source code is profiled to generate a memory trace. The
profiling result is used to find target functions with high
dynamic call counts, and the proposed register promotion
is applied only to the target functions to save the compila—
tion time. By examining the memory trace of the target
functions, we search for memory accesses that can result
in cycle count reduction if changed to register accesses.
Such a memory access is replaced by a register access by
modifying the code and allocating a promotion register. The
experimental results show that the proposed method is ef-
fective in that average cycle count reduction is about 14%

with increasing less than 1% of the code size.
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