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ABSTRACT

In this paper, we analyze the delay performance for a Markovian source transported over a wireless channel
with time-varying error characteristics. To improve the reliability of the channel, the end points of the wireless
link implement a selective-repeat (SR) ARQ error control protocol. We provide an approximate discrete-time
analysis of the end-to-end mean packet delay, which consists of transport and resequencing delays. Numerical
results and simulations indicate that our approximate analysis is sufficiently accurate for a wide range of
parameter values.

1. Introduction subdivided into queueing and retransmission

delays. The queueing delay is defined as the time

In this study, we consider a wireless link that taken by a packet from its arrival at the

provides sequential delivery of packets and that transmitter buffer until its first transmission

uses Selective Repeat (SR) automatic repeat attempt. The retransmission delay is defined as

request (ARQ) for error control. There exist the the time from a packet’s first transmission until

various delay components that a packet undergoes its successful arrival at the receiver. The

when transported over a wireless link. The resequencing delay is defined as the waiting time
end-to-end delay consists of transport and of the packet in the resequencing buffer.

resequencing delays. The transport delay is again In this study, we investigate the mean
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end-to-end delay for a general Markovian source
that is transported over a wireless link with SR
ARQ error control. To capture the time-varying
and correlated nature of the radio channel, we
model it using Gilbert-Elliot’s model. We divide
the end-to-end delay into queueing, retransmission,
and resequencing delays. For the queueing delay,
we simplify the analysis by eliminating the
dependence of the queueing process on the past
packet transmission process. We derive the exact
probability generating function (PGF) for the ideal
SR ARQ and obtain the mean delay using Little’s
law. The mean retransmission delay is easily
obtained since it only depends on the channel
parameters and the round-trip delay. Finally, we
derive an expression for the mean resequencing
delay under heavy-traffic conditions. The adequacy
of our analytical results are verified by contrasting
them against more realistic simulation results.

An extensive amount of literature exists on
analyzing the performance of SR ARQ protocol in
terms of throughput, mean queue length, and
mean delay. In order to analyze other measures
of performance such as buffer distribution and
packet delay, Konheim used the system state
vector considering a feedback delay [7].
Anagnostou and Protonotarios proposed an
alternative approximate approach that reduces the
computational complexity of the analytical results
[1]. One problem with these approaches is that
their computational complexity increases
dramatically with the feedback delay. Fantacci
used a 2-state Markovian radio channel, yet
employing a Bemnoulli process for packet arrivals
[51. Rosberg and Shacham analyzed the
resequencing delay and the buffer occupancy at
the resequencing buffer assuming heavy-traffic
conditions and static radio channel [9]. Rosberg
and Sidi analyzed the joint distribution of buffer
occupancy at the transmitter and receiver [10]. In
addition, they derived the mean transmission and
resequencing delays. However, they assumed a
renewal arrival process and independent packet
erTors.

. Queueing and Retransmisson
Delays

Consider the queueing system at the transmitter
side of a wireless link. Our queueing model is
based on an Markov chain in which the number
of packets in the queue is observed at the
beginning of each time slot, just before the
arrival of a new packet or of an ACK/NACK
message. A time slot corresponds to a packet
transmission time. We assume that ACK/NACK
messages are always error free. The arrival
process is N-state Markovian that is governed by

a transition probability matrix [P, where at each

state 7, =0, -, N, 1 packets are
generated in one time slot. The wireless channel
is modeled by Gilbert-Elliot’s model, in which the
channel alternates between Good and Bad states,

with corresponding bit error probabilities P g
and P ., respectively. The packet eror

probability when the channel state is in state j is

denoted by e 7=0,1- The packet error

probability in Good ( j=()) and Bad (j=1)
channel states are given by:
e=1—(1—-P )" )
e=1-(1-P )t @
for a packet size of [, bits.

Our analytical approach is based on the
approximation in {1, 5], where the transport delay
is divided into two parts: queueing and
retransmission delays. In order to obtain the
queueing delay, the authors in [1, 5] approximate
the behavior of a real SR ARQ by ignoring the
dependence of ACK/NACK arrivals on the
system’s past history. This simplification is
referred to as the ideal SR ARQ case [5]. Note
that this assumption does not mean the feedback
delay is ignored, but that its impact on the
queueing process is not incorporated. In the
following, we derive the PGF for the queue
length in the ideal SR ARQ case. We assume
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that packets are served on a FCFS basis and that

the buffer capacity is infinite. Key notations are

summarized as follows:

a(k): Number of new arrivals during the kth
slot.

7{k): Channel state at the beginning of the %
th slot.

g(Ai, 7) : Queue length at the beginning of the
kth slot when the source is in state ; and the
channel is in state j.

P: Transition probability matrix for the arrival

process at the transmitter buffer.

J¢:: Transition probability matrix for the process
that describes the state of the radio channel.

The transition probabilities for the arrival

process are defined as P=][p ; j], where

;2 Pria(k+1)=ja(® =1, 0<ij<N. )

Also, the transition probabilities for the channel

process are defined as R=/[# ; j], where

ri & PrlktD=inR =4, ijel0, 1 @

where states 0 and 1 denote Good and Bad
channel states, respectively.
The size of the queue at the beginning of slot

k is a function of its size in the previous slot,

the number of packets that arrive during slot k,
and the state of the feedback message. Thus, the
queue size at the beginning of the (k+I)th slot is

obtained as follows:
If g(H-,-)+a(k)>0, then
(M, D+i—1

with probability p ;- (1—e;) -7,
a(Hi, )+

N _ | with probability p ;- e;* 7v;;

R UL = i 1= + i1 T
a(Hi,1-)+i

with probability p ;- e —;* vi—;;

®)

and if g(H -, - )+ a(k) =0, then
ak+1L7)=0,
(6)
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with probability p ;- (1—e ;) 7 _;;

with probability 1) il (rfv)'+ Yi-j i)

where 0<;, /<N and (<j<]. In (5), the last
two cases correspond to the state of the radio
channel going from 1-j to j, whereas no transition
occurs in the other two cases. Furthermore, the
first and third cases correspond to a successful
packet transmission, whereas in the other cases,
the transmitted packet is in error. The steady state

probability g ; (#) is defined as:

aifm 2 lim Prle(Hii)=n]. @

From (5) and (6), the state balance equation is
obtained as follows:

I %>0,

min (N, n+1)

g {n)= (7j,j—e—jpl.iq Lin—I+1)

+ 7= e5p1a ,Hn—1+1)
min (N, n)
(riepia.{n—10
tr5espa, (n=0)
' 6)
where —9; denotes 1 —x. And, if =)

min (N, #+1)

qi‘j(n)z 4 (7,',,‘?,'171',0 ,‘,-(n—l+l)+r—,-‘].;:jp Li
cq f n= D)+ 0. L7500, A0+ 77 050D
)

Let @, (z) denote the PGF of the queue

length:
Qi,;‘(z) __A_ 204,;,(7%)2”.

From (8) and (9), we can obtain @ ;. (2):

o  min{¥, n+1)

Q.=

A=1

(7‘1‘.1‘?;'17 1 n=1+1)
min (N, n)

tro e r Dz 5 o
(rijepia,{n—D+resp,a,{n-Nz"
+ Zl'b(r,-,,-—e_ip Lan(1=D+r 55e p g, 51-1)
+00.{7,q040)+7 5.4 0“,(0))
(10
After some algebraic manipulation, we obtain:

Qi fDd=r;jep0a0 0+75 e300, +0
+re; Zj‘.zb 12T e 2 T 06 £Q0,(2)
~ 00 ) +51@ (D75, e5 500270 D
+r5e5z2 00 Q3D —a,5(N+p,.:Q, )

+7e; ﬁ‘bﬂ 12'Q (D +7 e ZNhﬂ 12'Q,+2)
1n
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Arranging the previous equation, we obtain:
Q2= B[P diag [z IOR "B} " IRE(2) '~ 11Q,
= 5,5 2@ (D (AUSED) - 11,
=8 T @ (UIBER) - 110,
(12)
where [ A] (; denotes the ()th row of A

and

Qo 2 10,0 Q1217

E(z) 2 diag[7(2), 7:(2)]

diag[z ] idiag [1,2,2%,2"]

Q2 2[Q0.0(2,Q0.1(2), Q1.0(2), @1.1(2),
',QN,o(Z), QN,I(Z)]T
In this step, detailed derivation is skipped for the

sake of brevity, but will be available on request.

Substituting @, into the previous equation, we
obtain:
ALz
o= "5 7% 8 o

(h (2)—7/0(—2“&% ot A ,1(2)—7/%12()4)40 1)-

13)
Let A4(z) denote the characteristic function of the
system:

Az 2 T a2, (14)

The poles of (13) are equal to the roots of this
characteristic function. We need to determine two
unknown variables g 0.0 and g 0.1 using two
conditions. First, since (z) is analytic for each
root z, |zJ<1, we can set up the following

boundary condition:

h (2 )_,]7%%)_00,0+h a(z i)l_;%%‘lqo,lzo
5)
Secondly, we use the relation:
(16)

lixE}Q(z)= 1.
Solving (15) and (16), we can determine the
unknown variables

values of  the do.0 and

qo, 1 Thus, the mean queue length _:1 is given

by
=@ ). (17

Also, using Little’s law, we obtain the mean

packet delay _d given by

d=—4 (18)
Ps

where o is the mean arrival rate. Recall that we
approximate the queueing delay under SR ARQ

error control by "4 in (18), which is the mean
queueing delay under an ideal SR ARQ system
with zero feedback delay.

To obtain the retransmission delay for a real
SR ARQ, we use the results in [6], where the
of transmission

mean number attempts  per

correctly received packet 3 was given by

n=1+ U(I-9) "'V (19)
where [/,=[1 1] and
S= [”0 ,0€0 71 oeo] 20
7’0 he ”1 1@1
V= [ T r,()eO] @1
.18

where r(,s; corresponds to the (7, 7)th element

of gstep transition matrix R, and 1, o and

7, are the steady-state probabilities that the

channel is in Good and Bad states, respectively.

Combining the queueing delay in (18) and the
we obtain the
normalized mean transmission delay T:

retransmission delay in (19),

T=d+sn—5.

5 22)

. Resequencing Delay

In this section, we derive an upper bound on
the mean resequencing delay obtained under a
heavy-traffic scenario, ie., packets are always
supplied. Given a feedback delay of s slots, the
feedback message from the receiver is delivered
to the transmitter s slots after the packet is

transmitted.

Let X() 2 (X,(9, X8, X(§) denote the
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set of identifiers of the packets which are
transmitted during window t. We assume that
packet identifiers are numbered in an increasing
order. This assumption affects the accuracy of
this analytical approach since the packet error
probability is dependent on the location of a slot.
However, the error caused by this assumption is
acceptable in most practical situations  except
when the sojourn time of a channel state is small
relative to the window size (or the feedback
delay).

The process {X(f),¢=1,2,---} governs the
evolution of the occupancy of the resequencing

buffer. Let D(7 and W, ($ be defined as

follows:

Di(t) i X,‘+1(t)_X,'(t), i=1,2,"’,s (23)
W) 2 BDD, =125 )

with D7) “ 1. Rosberg and Shacham [9]

observed that the buffer occupancy at window t,
B(p), is given by:

B(H=W(d—s. (25)
Furthermore, they observed that the system state
W, A, t=1, 1<i{s—1 is govemned by the

following:

® If there were fewer than s—; NACK'’s during
window f then W _ (¢++1)=i+1

® If there were s—;+/ NACK’s, (</<j, and
if the (s—j)th NACK was for the packet
XD s—i<k<s—1 then
W (t+ )= W()+(—D.

In the following, we extend the previous analysis
to the case of Gilbert-Elliot’s channel. First, let
Wi{fdg) and Wi(4b) denote the value defined in
(24) given that the state of the radio channel
before the beginning of window t-1 is Good (g)
and Bad (b), respectively. The distribution of
W,_{t+1lg) is given by:

934

i+1,

s—i—1
W,_(t+1lg=] With probability - 23, p(s, mlg)
WD+ (-0,
with probability P (i,k,1)
26)
where

Poy= 5 (ok=L.5—i= L g8)ro e ofls— k, 1g)

+rg e p(s— kA +plk—1,5—i—1, Hg)
(71 pep(s—k Ag) + 7y e p(s— &, 1)),

In the previous equation, p(s, Hr,) denotes the
probability of k unsuccessful transmissions in n
consecutive slots given that the radio state at the
beginning of a window is »,. And p(#, &, 757))
denotes the probability of k unsuccessful
transmissions in n consecutive slots and the state

of the radio channel of the last slot is 3, given
that a radio state before the beginning of a

window is 7 In a similar way, the distribution

of W,_(t+1lp) is given by:

it+1,
s—i—-1
W, (t+116)= with probability 3 (s, mlb)
Wy + (=0,
with probability P, (i, k, ]
27
where

PG kD= 5 (Wk—1.5—i~1,4b)

(7q0eot(s—k, 48) + 7 1e10(s— k, 15))
+p(k—1,s—i—1,88) (7 geep(s— k&, 12
+71e10(s— k&, 45)).

Taking the z-transform and some manipulation,

we have

W,_(2)= S;Z:O 1IZP[s, m]Uz "1+ ;’0 k:z:_liﬂ
» Plk—1,5s—i—11REP[s— k, QUW(2)2 " ".
(28
where J7 is the steady-state probability vector of
the  radio state, ie., n=[r,¢ 7,0
E= diag[ep, ¢;], and

A [pn, k dg) pn, k e
A Bl i S

Exploiting the recursive structure, we obtain the
following difference equation:
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Pln,Kl=R EP[n—1,Fl+ REP[n—1,k—1]
(29)

with the boundary conditions

P[0,0]=1

Pln,kl=0, if n<k or n k0.

where ~E= diag[ ¢, e,]- The solution to the

above difference equation is obtained numerically.

To obtain the mean buffer size, we differentiate

(28) with respect to z and evaluate at z=1. Let

7N be defined as:

A AW, (2)
Hs—i — dz |z=1 : (30)

Thus, we have
' o i=0+1D5 %)
+ 35S (G- 0fa ik D+ Fo Gk Du )
(€3]
where
H(D= sz,‘; II P[s, m]
foli, b, ) =M P[k—1,s—i—1]REP[s—k ] U.

Arranging the previous equation, we obtain for
1<i<s—1:
=GR+ Y S Sl D 1+ )+
3 fai,s— i, 0 (= DXL = 3, faliss=i,0) "
(32)
and 4 =]. The mean buffer occupancy is
u; —s. Using Little’s law, we obtain the
mean resequencing delay 7°.:

T,=—&——— (33)
Tyt T, €

IV. Numerical Results

We now give numerical examples based on the
previously presented analysis and contrast them
against more realistic simulation results. We
consider a single discrete-time on-off source in
which one packet is generated in a time slot
during the on periods. Transitions between on and
off states are governed by the transition

probability ~matrix  P=[p, ],0<s;<1. The
characteristics of the on-off source are represented
by the mean arrival rate (p) and the mean
length of the on periods ( 7). We also define
three parameters for the Gilbert-Elliot’s radio
channel: the average packet error rate ( g). Table
1 gives the values of the various parameters used
in our experiments.

Range of values
Parameter Symbol (default value)
Mean arrival rate O 0.3-0.7 (0.5)
Mean on period T .0 10-300 (100)
Mean packet error 0.01-0.3 (e_1=09,
rate € e_0=0.001)
Duty cycle of Bad

.05-0.2 (0.1

period o, 0.05-0.2 (0.1)
Transition probability
from Good to Bad ¥o.1 0.005-0.1 (0.03)

Table 1. Parameters used in the numerical results.

Figure 1 shows the mean transport delay as a
function of p  for s$=10,50,100 (time is in slot
units). As shown in the figure, the mean transport
delay is less sensitive to the input load. Since
one packet is generated per slot, no queueing
delay is occurred unless a NACK is returned.
Since we fix the average duration of the Bad
period at 10% of the average duration of the

100+ 3«10 {simulation} o
=10 {analysia) ——

=50 (nimutation)  +

2=
s=100 (eimulation}

80 =100 {analysigy ~-~ /' i
.
5 e} /] 1
g
g !
§ R <
g e [
o B—— -// 4
e T O -
o . N . X
e 22 04 a5 o8 1

input joad

Figure 1. Mean transport delay versus input load.
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Good period, it is hard to notice any significant
queueing delay up to medium input load. As p,

increases, it is more likely that the on state and
Bad state occur simultaneously which may cause
a higher queueing delay. In this figure, the
analytical results tend to overestimate the
simulations by less than 10%.

T
analysis —
400 F simuiation, heavy loed o
simidation, p=0.7 +

Mean resequending delay

o s L
001 002 803 8.0 237 0.08 008 0.4

4 005 Q.
Mean packet enror rate
Figure 2. Mean resequencing delay versus g.

Figure 2 shows the mean resequencing delay

versus ¢ for $=50,100. With such large values of
s, we can examine the worst-case inaccuracy of
the analysis with respect to the second
assumption. The analysis is contrasted with exact
simulation results obtained under heavy load and
under 70% load. If the resequencing analysis were
to be conducted without the second assumption,
then we would expect a match between the
analytical results and the heavy-traffic simulations.
But Fig. 2 shows that the heavy-traffic
simulations upper bound the analytical results,
indicating opposite effects for the above two
assumptions. For s=50, the analytical results are
sufficiently close to both types of simulations. In

general, we observed that at small values of ¢
the mean resequencing delay is somehow
insensitive to the input load. For s=100, the
analytical results lie between the two types of
simulations, being closer to the heavy-traffic
simulations when g is small and to the 70%-load

simulations when ¢ is large.
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V. Conclusions

In this paper, we investigated the mean
end-to-end delay for a general Markovian source
transported over a wireless channel with
time-varying error characteristics. An SR ARQ
error control protocol was assumed between the
transmitter and the receiverr We obtained an
approximation for each component of the total
mean delay, which consists of queueing,
transmission/retransmission, propagation, and
resequencing delays. Numerical examples based on
the analysis indicate good agreement with
simulation results obtained under less stringent
assumptions. It was observed that the mean
resequencing delay becomes a more significant
portion of the total mean delay as the channel
conditions deteriorate.
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