한국수학사학회지 (Journal for History of Mathematics)
- 제17권4호
- /
- Pages.37-44
- /
- 2004
- /
- 1226-931X(pISSN)
깊이의 식과 토르 게임에 대하여
On Depth Formula and Tor Game
초록
힐베르트 시지지 정리와 그에 따른 분해에서 호몰로지 대수의 흔적을 찾을 수 있다. 1950년대에 이르러 대수 위상의 발달과 함께 그의 이론적인 도구로서 호몰로지 대수의 실질적인 시작을 볼 수 있다. 1956년 쎄레는 정칙 국소환의 대역적 차원이 유한하다는 것을 증명하였는데, 이 정리는 호모로지 대수적인 문제 풀이에서 근본적인 도구를 제공하고 있다. 호모로지 대수에서 토르를 구하고 그의 깊이를 계산하는 것은 어려운 문제인데, 이 논문에서는 1961년 오슬랜더가 제시한 토르 가군의 깊이에 관한 문제와 그에 따른 토르 게임(Tor game)에 대하여 논하고자 한다.
Homological algebra has emerged and developed since 1950s. However, in 1890's Hilbert investigated the resolutions in his Syzygy Theorem which is a vital ingredient in homological algebra. In 1956 Serre has proved the finite global dimension of regular local rings. His result give a basic tool in homological algebra. This paper also deals with the depth formula that was raised by Auslander in 1961.
키워드