Bull. Korean Math. Soc. 41 (2004), No. 4, pp. 657664

SKEW POWER SERIES EXTENSIONS
OF o-RIGID P.P.-RINGS

EBrRAHIM HASHEMI AND AHMAD MOUSSAVI

ABSTRACT. We investigate skew power series of a-rigid p.p.-rings,
where « is an endomorphism of a ring R which is not assumed to
be surjective. For an o-rigid ring R, R[[z;a]] is right p.p., if and
only if R{[z,z~*;a]] is right p.p., if and only if R is right p.p. and
any countable family of idempotents in R has a join in I(R).

1. Introduction

Throughout this paper R denotes an associative ring with identity
and @ : R — R is an endomorphism. We denote C(R) the center of R
and S = R|[z; a] the skew power series ring, whose elements are power
series of the form Z;’gorixi with coefficients r; € R, where the addi-
tion is defined as usual and the multiplication subject to the condition
xb = a(b)z, for any b € R. The set {2°};>¢ is an Ore subset of R[[z;q]],
so that one can localize R[[z; ]| and form the skew Laurent series ring
Rl[z,z71;a]]. Elements of R[[z,z~*;q]] are formal combinations of ele-
ments of the form 27 7rz?, where r € R and 1, j are nonnegative integers.

Recall that R is (quasi-)Baer if the right annihilator of every (right
ideal) non-empty subset of R is generated (as a right ideal) by an idem-
potent of R. These definitions are left-right symmetric. The study of
Baer rings has its roots in functional analysis. In [19] Rickart studied
C*-algebras with the property that every right annihilator of any ele-
ment is generated by a projection (i.e., p is a projection if p = p? = p*,
where * is the involution on the algebra). Using Rickart’'s work, Ka-
plansky [13] defined an AW*-algebra as a C*-algebra with the stronger
property that the right annihilator of the nonempty subset is generated
by a projection. A ring satisfying a generalization of Rickart's condition
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(i.e., every right annihilator of any element is generated (as a right ideal)
by an idempotent) has a homological characterization as a right p.p.-
ring. A ring R is called a right (resp. left) p.p.-ring if every principal
right (resp. left) ideal is projective (equivalently, if the right (resp. left)
annihilator of an element of R is generated (as a right (resp. left) ideal)
by an idempotent of R). R is called a p.p.-ring if it is both right and
left p.p. In (4] Birkenmeier et al. defined a ring to be called right (resp.
left) principally quasi-Baer (or simply right (resp. left) p.q.-Baer) if the
right annihilator of a principal right (resp. left) ideal of R is generated
by an idempotent. A ring is called p.q.-Baer if it is both right and left
p.q.-Baer. Observe that every biregular ring and every quasi-Baer ring
is p.q.-Baer. Note that in a reduced ring R (i.e. it has no nonzero nilpo-
tent elements), R is p.q.-Baer if and only if R is p.p. For more details
and examples of right p.q.-Baer rings, see [4].

In 5], Birkenmeier et al. showed that the quasi-Baer condition is pre-
served by many polynomial extensions including R[[z; )] and R[[z,z7;
a]]. Following Krempa [15], a ring R is said to be a-rigid if for each
a € R, aa(a) = 0 implies that a = 0. Note that o-rigid rings are re-
duced, and hence abelian (i.e. every idempotent is central). In [9] Hong
et al. showed that, an c-rigid ring R is quasi-Baer if and only if R[[z; o]
is quasi-Baer. Following [18], a ring R is called Armendariz if whenever
two polynomials f(z) = Y.y aiz’, g(z) = o bz’ € R|z] satisfy
f(z)g(x) = 0 we have a;b; = 0 for every ¢, 5. By [2, Theorem 10, for an
Armendariz ring R, R is left p.p. if and only if R[z] is left p.p. Fraser
and Nicholson in [7] showed that R[[z]] is reduced p.p. if and only if
R is reduced p.p. and any countable family of idempotents of R has
a least upper bound in I(R), the set of all idempotents. Z. Liu in [16,
Theorem 3], showed that: If R is a ring such that all left semicentral
idempotents are central, then R[[z]] is right p.q.-Baer if and only if R
is right p.q.-Baer and any countable family of idempotents in R has a
generalized join in I(R).

In this paper we show that for an a-rigid ring R, R[[z;«]] is right
p.p. if and only if R[[x,21; o] is right p.p.if and only if R is right p.p.
and any countable family of idempotents in R has a join in I(R). As a
consequence, for a reduced ring R, R[[z,z~]] is right p.p. if and only
if R[[z]] is right p.p. if and only if R is right p.p. and any countable
family of idempotents in R has a join in I(R). This extends the main
result of Fraser and Nicholson [7].
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2. Skew power series extensions of a-rigid p.p.-rings

In this section, we give a necessary and sufficient condition for some
rings under which the ring R[[x; a]] is right p.p.

For a nonempty subset X of R, rg(X) and £g(X) denote the right and
left annihilators of X in R respectively. We put rAnng(2%)={rg(V) |
V C R} and lAnng(2F) = {{r(V) |V C R}.

Motivated by results in Armendariz [2], Anderson and Camillo [1],
Kim and Lee [14], Hong et al. [9] and [10], we introduce conditions (SA1)
and (SA2) which are skew power series versions of the Armendariz rings:

DEFINITION 2.1. For a ring R and a monomorphism a : B — R,
we say R satisfies the (SA1) condition if for each f(z) = Y 2, a;z* and
g(z) = Y520bj2? € S = R[[z;0]], f(z)g(z) = 0, implies that a;b; = 0
for all 4, 5. '

LEMMA 2.2. [9, Lemma 4]. Let R be a-rigid. Then we have the
following:

(i) If ab = 0, then aa™(b) = a™(a)b = 0 for each positive integer n.

(ii) If ac®(b) = 0 for some positive integer k, then ab = 0.

PROPOSITION 2.3. Let R be a-rigid and S the skew power series ring
R[[z;a]]. Then we have the following:

(i) R satisfies conditione (SA1);

(ii) ¢ : rAnng(28) — rAnng(25); A — AS is bijective;

(iii) 1 : LAnng(2R) — LAnng(2%); B — SB is bijective.

Proof. (i) It follows from [10, Proposition 17|. (ii) It is clear that ¢
is a well defined map. Let J be an element of rAnng(2°). There exists
a nonempty subset Y of S such that rg(Y) = J. Suppose that X is
the set of coefficients of elements of Y. We show that rg(Y) = rr(X)S.
Since R is a-rigid, rr(X) C rs(Y) and hence rg(X)S C rg(Y). Let
f(x) = ap + a1z + --+ € rg(Y). Since R satisfies condition (SAL),
Xa; =0fori=0,1,--- . Hence f(z) € rg(X)S, thus rs(Y) = rr(X)S.

Similarly we can prove (iii). d

DEFINITION 2.4. (Z. Liu, [16]). Let {eg, e1, - - - } be a countable family
of idempotents of R. We say {ep, 1, - - - } has a join in I(R) if there exists
an idempotent e € I(R) such that

1. {1 —€)=0, and

2. If f € I(R) is such that e;(1 — f) =0, then e(1 — f) = 0.

THEOREM 2.5. Let R be a-rigid. Then the following conditions are
equivalent:
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1. § = R[[z; a]] is right p.p.
2. R is right p.p. and any countable family of idempotents in R has
a join in I(R).

Proof. 1==2. Let a € R. There exists an idempotent e(z) = ey +
erx+--- € S such that rg(a) = e(z)S. By [9, Corollary 7], e(x) = g and
thus rg(a) = egS. Therefore rgr(a) = egR. Suppose that {eg,e1, - }isa
countable family of idempotents in R. Set ¢(z) = eg+e1z+eaz?+--- €
S. Since S is right p.p., there exists an idempotent e(z) = fo + fiz +
.-+ € 8, such that rg(¢(z)) = e(z)S. By a similar argument we have,
rs(¢(z)) = foS. Hence, by Lemma 2.2, e;fo = 0 for ¢ = 0,1,---. Let
g =1—fo. Then e;(1—g) = 0 for each i. Suppose that h is an idempotent
of R such that e;(1 — h) = 0 for each i. Then by Lemma 2.2, (1 - h) €
rs(¢(z)). Thus (1 - h) = fo(1 - k) and g(1 — h) = (1 = fo)(1 = h) = 0.
Hence g is a join of the set {eg,e1, - }.

2= 1. Let f(z) = ap+a1z+--- € S. Then there exist idempotents
e;, with 4 = 0,1,---, such that rg(a;) = e;R. Suppose that h is a
join of the set {1 — el = 0,1,---}. Thus (1 — ¢;)(1 —h) = 0 and
hence (1 — h) = e;(1 — h). Thus, a;(1 — h) = a;e;(1 — h) = 0 for
1 =0,1,--- . Hence (1 — h) € rs(f(z)), by Lemma 2.2, which implies
that (1-h)S C rs(f(z)). Suppose that g(z) = bo+biz+- - € rs(f(x)).
Since R satisfies condition (SA1), a;b; = 0 for all 4, j. Then b; = e;b; for
all 4,j. Now b;(1—e;) = 0 because e; € C(R) for all 4, 5. Since R is right
p.p., 7r(b;) = f;R for idempotents f; € R. Thus (1—e;) € rr(b;) = f;R,
so (1 —e;) = f;(1 — ;) for all 4, 5. Hence from (1 —¢;) € C(R), we have
(1—e;)(1—f;) = 0. Since hisa join of {1—e;|i =0,1,---}, h{(1—f;) =0
for all ] Hence bj = bj —bjfj = (1 —fj)bj = (1-—h)(1—-fj)bj € (1 —h)R
for all 5. So g(z) € (1 —h)S. Therefore rg(f(z)) = (1 — h)S, and hence
S is right p.p. (|

COROLLARY 2.6. (Fraser and Nicholson [7, Theorem 3]). Let R be
a reduced ring. Then the following conditions are equivalent:

1. R|[z]] is right p.p.

2. R is right p.p. and any countable family of idempotents in R has
a join in I(R).

3. Skew Laurent power series extensions of a-rigid p.p.-rings

In this section, we give a necessary and sufficient condition for some
rings under which the ring R|[[z,z~!;a]] is right p.p.
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Now consider D.A. Jordan’s construction of the ring A(R,qa) (See
[12], for more details). Let A(R,a) or A be the subset {z~'rz’ | r €
R, i > 0} of the skew power series ring R[[z,z7};a]]. For each j > 0,
zirat = £~ 0+ od (r)2(+9), Tt follows that the set of all such elements
forms a subring of R[[z,z~1; a]] with z %z’ + z~rzd = 2=+ (ad (r) +
a¥(s))z®*9) and (z7rzt) (7 s27) = £~ D ad (r)ai(s)z+D) for r,s € R
and 4,7 > 0. Note that « is actually an automorphism of A(R,a). We
have R[[z,z71; o] ~ Al[z,z7};q]], by way of an isomorphism which
maps =~ 'rz? to a~(r)z? =% Also for an automorphism a of R we have

R = A(R, o).

DerINITION 3.1. For a ring R and a monomorphism « : R — R,
we say R satisfies the (SA2) condition if for each f(z) = Y 2, uz’

and g(z) = 332, va? € T = Allz,z7;a]], f(x)g(x) = 0, implies that
uzv; = 0 for all 7, 5.

PROPOSITION 3.2. Let a be an automorphism of R. Let R be a-rigid
and T the skew Laurent power series ring R|[z,z7};a]]. Then we have
the following:

(i) R satisfies condition (SA2) ;

(ii) ¢ : rAnng(28) — rAnnp(2T); A — AT is bijective;

(iii) ¢ : LAnng(2R) — LAnnr(2T); B — TB is bijective.

Proof. (i) Let f(z) = Y32, uizt, g(z) = e nvit? € T = Az, 271
a]] and f(z)g(z) = 0 with m,n € Z. Put fi(z) = 2~™f(x) and ¢g1(x) =
g(z)x™", hence fi(z)g1(z) = (XZn ™ (wi)e* ™) (2, vja’ ™) = 0.
By [9, Proposition 17], o/™(u;)u; = 0 for all 4,5. Hence u;v; = 0 for all
1,7, by Lemma 2.2.

In a similar way as in the proof of Propositions 2.2, we can prove (ii)
and (iii). O

LeMMA 3.3. A ring R is a-rigid if and only if A(R,a) is a-rigid.

Proof. Tt is clear that any subring of an a-rigid ring is also a-rigid.
Suppose that R is a-rigid and (z7*rz*)a(z*rz") = 0, where ¢ > 0 and
r € R. Hence ra(r) =0, and so r = 0. O

LEmMMA 3.4. Let R be a-rigid. Then each countable family of idem-
potents in R has a join in I(R) if and only if each countable family of
idempotents in A(R, o) has a join in I(A(R, @)).

Proof. Let {e; |t = 0,1,---} be a countable family of idempotents
in A. For each e; there exists an idempotent e; € R and nonnegative
integer j; such that e; = 7e;z%. Then {e; |i = 0,1,---} has a join e in
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I(R). We show that e is a join of {e; |i = 0,1,---}. Since ¢;(1 —e) =0,
e;(1—e) = 0 for all 4, by Lemma 2.2. Suppose that f € I(A) is such that

(2
!

e;,(1-f ") = 0 for all i. There exist an idempotent f € R and nonnegative
integer n such that f = z " fz". Then 1 — f = & (1 — f)z™. Since
e;(1—f) =0, (1 — f) = 0 for all i by [9, Proposition 5], because
a(e) = e. Since e is a join of {¢; [i =0,1,---}, e(1— f) = 0. By Lemma
2.2, e(1— f') = 0, and hence e is a join of {e; |i = 0,1,--- }. Conversely,
suppose that {e; [¢ = 0,1,--- } is a countable family of idempotents in R.
Then {e; |i = 0,1,---} has a join € in I(A). There exist an idempotent
e € R and nonnegative integer n such that € = 2z "ez". By a similar
argument one can show that e is a join of {¢; | =0,1,---}. O

LEMMA 3.5. Let R be a-rigid. Then R is right p.p. if and only if
A(R, ) is right p.p.

Proof. Assume that R is right p.p. Let a = 2 *tz’ be an element of
A and 277b27 € r4(a). By Lemma 2.2, b € rg(t). Since R is right p.p.,
Tr(t) = eR for an idempotent e € R. Thus eb = b, so by Lemma 2.2,
a™(e)b = b for each positive integer n. Hence e(z~7ba’) = 277b2?, thus
r4(a) C eA. Since R is a-rigid, eA C r4(a). Hence r4(a) = eA, thus A
is right p.p. Conversely, suppose that A is right p.p. Let t € R. Since R
is a-rigid and A is p.p., ra(t) = (z7ex?) A, where e is an idempotent of
R and j is a nonnegative integer. By Lemma 2.2, eR C rg(t). Now let
b e rg(t). By Lemma 2.2, b € ra(t) = (z77ex?) A, hence b = (z 7ez’)b.
Therefore b = eb and so rgr(t) C eR, which implies that R is right
p-p- O

THEOREM 3.6. Let R be a-rigid. Then the following conditions are
equivalent:

1. R[[z,z7 ;] is right p.p.

2. R is right p.p. and any countable family of idempotents in R has
a join in I(R).

Proof. We have R|[[z,2™};a]] ~ A[[z,z7; a]] where « is an automor-
phism of A. By Lemma 3.3, R is a-rigid if and only if A is a-rigid. By
Lemma 3.4, any countable family of idempotents in R has a join in I(R)
if and only if any countable family of idempotents in A has a join in
I(A). By Lemma 3.5, R is right p.p. if and only if A is right p.p. The
rest of the proof is similar to the proof of Theorem 2.5. ]

LEMMA 3.7. Every a-rigid ring satisfies condition (SA2).

Proof. We observe that « is an automorphism of A(R,a) and by
Lemma 3.4, A is a-rigid. Now the proof follows from Proposition 3.2. [
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The following result is a generalization of Fraser and Nicholson [7]:

COROLLARY 3.8. For an a-rigid ring R, the following conditions are
equivalent:

1. R[[z;«]] is right p.p.

2. R[[x,z~};a]] is right p.p.

3. R is right p.p. and any countable family of idempotents in R has
a join in I(R).

Proof. 1t follows from Theorems 2.5 and 3.6. O

COROLLARY 3.9. For a reduced ring R, the following conditions are
equivalent:

1. R[[z]] is right p.p.

2. R|[z,z~!]] is right p.p.

3. R is right p.p. and any countable family of idempotents in R has
a join in I(R).

«

The following example [6, Example 3.6] shows that condition “ any
countable family of idempotents in R has a join in I(R)” is not super-
fluous.

EXAMPLE 3.10. There is a reduced right p.p.-ring R such that
R[[z; @] is not a right p.p.-ring. For a given field F', let

R = {(an)$2, € I, F, | a, is eventually constant }
which is a subring of II32 ; F},, where F;, = F forn =1,2,--- . Then the
ring R is a commutative von Neumann regular ring and hence it is right
p.p. Let a be the identity map on R. Then R is a-rigid, but R[[z; a]] is
not right p.p.
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