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ASYMPTOTIC STABILITY IN
GENERAL DYNAMICAL SYSTEMS

Younac IL KiM, KYUNG BOK LEE AND JONG SOH PARK

ABSTRACT. In this paper we characterize asymptotic stability via
Lyapunov function in general dynamical systems on c-first count-
able space. We give a family of examples which have first countable
but not c-first countable, also c-first countable and locally compact
space but not metric space. We obtain several necessary and suf-
ficient conditions for a compact subset M of the phase space X to
be asymptotic stability.

1. Introduction

In [1}, Bhatia and Szegé verified several necessary and sufficient condi-
tions for a compact subset M of the metric space X to be asymptotically
stability . The purpose of this paper is to extend this result to a general
dynamical systems on c-first countable and locally compact space. The
basic feature of the stability theory in dynamical systems is that we find
several necessary and sufficient conditions for a compact subset M of
the phase space X to be asymptotically stable.

2. C-first countable spaces

In the sequel, we denote by M and &M, respectively, the closure and
the boundary of the set M.

DEFINITION. A space X is said to be c-first countable if for each
compact subset K of X, the quotient space X/K is first countable.
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Let X be a c-first countable space. Given any compact subset K of
X, there exists a family U consisting of countably many neighborhoods
of K such that every neighborhood of K contains some member of /.
Such a family U will be called countable neighborhood base of K.

THEOREM 2.1. Every second countable space is c-first countable.

Proof. Let X be a second countable space. There exists a countable
basis § for X. Given any compact subset K of X, let & be the family
neighborhoods of K which are finite unions of members of 8. Thus U is
a countable neighborhood base of K. Then X is c-first countable. [

The converse of the above theorem is not true as shown by uncount-
able discrete spaces. Clearly every c-first countable space is first count-
able space. But its converse does not hold.

EXAMPLE 2.1. Let Xo = {(2,0) : z € R} and X; = {(z,1) : z € R}
be two subsets of the plane R?. We take a basis 3 for the topology on
the set X = Xy U X, as follows ;

B={{(z,1)}:z e R}U{B(z,r) : z € R,r > 0},

where B(z,y) = {(y,0) : |z —y| < r}U{(y,1): 0 < |z —y| <7} Ttis
clear that X is first countable. But X is not c-first countable.

Proof. Let us choose a compact subset K = {(z,0) : z € I} of
X, where I is the unit interval. For each neighborhood U of K, Let
IU)={z €I: (z,1) ¢ U}. Suppose that I(U) is infinite for some
neighborhood U of K. I(U) has a cluster point, say y, in I. Since
(y,0) € K C U, there exists a number r > 0 such that B(y,r) C
U. Since y is a cluster point of I(U), there is a number z € I(U)
such that 0 < |y — 2| < r. Since (z,1) € B(y,r) C U, we have a
contradicition. Thus I(U) is finite for all neighborhoods U of K. Let
U1,Us,Us, ... be neighborhoods of K. Since I(U,) is finite for all n,
A = U, I(Uy,) is countable. Thus there is a number w € I — A. Let
V = XoU{(z,1) : z # w}. Then V is a neighborhood of K and U,, ¢ V'
for all n. Thus there is no countable neighborhood base of K. Hence X
is not c-first countable. O

THEOREM 2.2. Every metric space is c-first countable.
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Proof. Let (X,d) be a metric space. Given any compact subset K
of X, it is easy to show that the family {B(K,1/n) :n =1,2,3,...}
is a countable neighborhood base of K, where B(K,1/n) = {z € X :
d(z,K) < 1/n}. Thus X is c-first countable space. O

The converse of the Theorem 2.2 is not true. The following example
shows that there exists a c-first countable and locally compact space
which is not a metric space.

EXAMPLE 2.2. For each irrational z, we choose a sequence (x,) of
rationals converging to it in the Euclidean topology. The rational se-
quence topology 7 on R is then defined by declaring each rational open
and selecting the sets

Up(z)={z::i=nn+1,n+2,... }U{z}

as a basis for the irrational point z. The space (R,7) is Hausdorff,
locally compact and not metrizable [3]. But, the space (R,7) is c-first
countable space.

Proof. Let K be a compact subset of R. If K —Q is infinite, where Q
is the set of rationals, then the open cover {U;(z) : z € K —Q}U{Q} of
K has no finite subcover. We have a contradiction. Thus K —Q is finite,
say, K — Q = {z',22,23,...,2™}. Let U be a neighborhood of K. For
eachi=1,2,3,...,m, since 2 € K—Q C U—Q, there is an n; such that
Uy, (2*) C U. Let N = maxn;. Then U™, Uy (z") U(KNQ) C U. Thus
{Ur Un(z)YU(KNQ):n=1,2,3,...} is a countable neighborhood
base of K. Hence (R, T) is c-first countable. O

LEMMA 2.1. Let X be a c-first countable and locally compact space,
and let K be a compact subset of X. For each neighborhood U of K,
there exists a countable neighborhood base {U(r) : r € D} of K such
that

(1) U)=U and

(2) ifry < re, then U(ry) C U(ry),
where D is the set of all rationals of form k/2"™,0 < k/2" < 1.

Proof. Let us show that for each » € D we can associate a neigh-
borhood U(r) of K satisfying the above conditions (1) and (2). We
proceed by induction on exponent of dyadic fractions, letting U, =
{Uk/2™) : k =1,2,3,...,2™}. There exists a countable neighborhood
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base {V,, : m =1,2,3,...} of K. We assume that V; D Vo D ... and
V1 is compact.

There is an m; such that V;,, C U. U consists of U(1/2) = V;,, and
U(1) = U. Assume U,_; constructed. Note that only U(k/2") for odd
number k requires. There is an m,, > m,_; such that V,,,, C U(1/2"1).
We define U(1/2") = V,,,,. For odd k # 1, we have from U,,_; that
U(k—1/27) C U(k+1/2™). So we define U(k/2") to be an open set V
satisfying U(k — 1/2") C V C V Cc U(k+1/2") and V is compact. This
completes inductive step. Given any neighborhood W of K, there is an
n such that V,,,, = U(1/2") C W. Thus the family {U(r) : r € D} is a
countable neighborhood base of K. a

THEOREM 2.3. Let X be a locally compact space. Then X is c-first
countable if and only if for any compact subset K of X there exists a

continuous nonnegative real valued function on X vanishes exactly on
K.

Proof. By Lemma 2.1, there exists a countable neighborhood base
{U(r) : r € D} such that if U(1) = X and that if r; < 7o, then
U(ry) C U(rz). Define a function h : X — RT by h(z) = inf{x € D :
r € U(r)}. Clearly 0 < h < 1. It is easy to show that h vanishes exactly
on K. Given any € > 0, we can choose an r € D such that r < «¢.
Since A(U(r)) C (—¢,€), h is continuous on K. We will show that A is

continuous at € X — K. There are two possibilities;

(1) h(x) < 1; Given any € > 0, we choose r; and 7 in D such that
h(z) —e <71 < h(z) < T2 < h(x) + €. Then U(ry) — U(ry) is a
neighborhood of z and h(U(r) — U(r1)) C (h(z) — €, h(z) + €).

(2) h(z) = 1; Given any £ > 0, there exists a number r € D such

that 1 —e <r < 1. Then X — U(r) is a neighborhood of z and

h(X —U(r)) c (1 —¢&,1+¢). Thus h is continuous.

On the other hand, there exists a neighborhood U of K such that U is
compact. For each positive integer n, the set U, = h™1[0,1/n) N U is
a neighborhood of K. Given any neighborhood V of K, suppose that
U, ¢ V for all n. For each n, we can choose an z,, € U,, — V. Since U
is compact, the sequence (z,,) in U has a convergent subsequence. Let
ZTn — z. Itisclear that x € X —V and h(z,) — h(z). Since h(z,) < 1/n
for all n, h(x,) — 0. Thus h(z) =0 and z € K. This is a contradiction.
So U, C V for some n. Hence the family {U, : n = 1,2,3,...} is a
countable neighborhood base of K. |
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3. Asymptotic stability in general dynamical systems

DEFINITION 3.1. Let S: X — 2Y be a function. Then S is called

(1) upper semicontinuous at x € X if for any neighborhood U of
S(x), there exists a neighborhood V of z such that y € V implies
S(y) cU.

(2) lower semicontinuous at x € X if for any neighborhood U of z
with S(z)NU # @, there exists a neighborhood V' of x such that
y € V implies S(y) N U # 0.

(3) continuous at z € X if it is upper semicontinuous at = and lower
semicontinuous at z.

Let C(X) be the set of all nonempty closed subsets of X.

DEFINITION 3.2. A continuous mapping f : X x R* — C(X) is said
to be a general dynamical system if the following axioms hold:

(1) f(z,0)={z} forallz € X
(2) if t1t9 > 0, then f(f(iv,tl),tg) = f(:L‘,t1 + tz)
(3) if y € f(z,t), then z € f(y,—t).

Throughout this section, let f : X x Rt — C(X) be a general dy-
namical system on c-first countable and locally compact space X.

DEFINITION 3.3. A trajectory of f on [a,b] C R ia a continuous
mapping V : [a,b] — X satisfying V(t2) € f(V(t1),t2 — t1) for any
ti1,t9 € [a,b] with t1 < ta.

PROPOSITION 3.1. Let y € f(x,ty —t1) with t; < t2. Then there is
a trajectory V of f on [t1,ts] such that V(1) =z, V(t2) =y [2].

COROLLARY. f(z,[a,b]) is path connected.

DEFINITION 3.4. Let z € X. The limit set L™ (x) of z is defined by

LT (z) =n{f(z,[t,00)) : t € R*}.

PROPOSITION 3.2. y € L™ (x) if and only if there exist t, — oo and
Yn € f(z,t,) such that y, — y [2].
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DEFINITION 3.5. A compact subset M of X is said to stable if for
any neighborhood U of M, there is a neighborhood V of M such that
f(VxRt)ycCU.

PRrROPOSITION 3.3. A necessary and sufficient condition for a compact
subset M of X to be stable is that there exists a positively invariant
neighborhood V of M with V C U for any neighborhood U of M.

Proof. The necessity is obvious. We shall prove the sufficiency. Since
X 1is locally compact, there exists a neighborhood W of M such that
W C U and W is compact. Also, there is a neighborhood V of M such
that f(V x RY) c W.

Then f(V x Rt) C U is a positively invariant compact neighborhood
of M. O

DEFINITION 3.6. Suppose the set M C X is compact. The region of
attraction A(M) of the set M is defined

AM) ={z € X : L*(z) # 0,L*(z) C M}.

PROPOSITION 3.4. Let M be a compact subset of X. © € A(M) if
and only if there exists t € R with f(z,[t,00)) C U for any neighbor-
hood U of M.

Proof. Necessity: There exists a neighborhood V of M such that
V c U and V is compact. Let y € L*(x). Then y, — y for some
tn, — 00, yn € f(z,t,). Suppose that there is an s > ¢ such that
flz,8) ¢ V for each t € RT. Since V is a neighborhood of y, we
may assume that y, € V for all n. There exists s, > ¢, such that
f(z,s,) ¢ V. Since f(z,[tn,sn]) is connected, f(z, [tn,sn]) N OV # 0.
Let z, € f(z,r,)NOV,t, <7, < s,. Since IV is compact, (z,) has a
convergent subsequence. Let z, — z € V. We have z € L™ (z) C M
using the fact r, — oco. This is a contradiction. Thus f(z, [t,00)) C
V C U for some t € RT,

Sufficiency: There exists a neighborhood U of M such that U is
compact. We can choose a t € R so that f(z,[t,00)) C U. Since
f(z,RY) = f(=,[0,4]) U f(z,[t,0)) C f(z,[0,t]) UT, f(z,RY) is com-
pact. Thus L*(z) # 0. To show L*(z) C M, suppose that there exists
an y € Lt (z) — M. There are neighborhoods V' of M and W of y such
that VN W = (. We can choose a t € Rt so that f(z,[t,0)) C V.
Since W N f(z,[t,0)) =0, y ¢ f(z,[t,00)) and so y ¢ L™ (z). Thisis a
contradiction. Thus L*(z) C M. Hence z € A(M). O
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DEFINITION 3.7.

(1) A compact subset M of X is attractor if A(M) is a neighborhood
of M.

(2) A compact subset M of X is said to be asymptotically stable if
M is stable and attractor.

DEeFINITION 3.8. Let M be a compact subset of X. Let W be a pos-
itively invariant neighborhood of M. A continuous functions ® : W —
R* is called Lyapunov function for M if the following two conditions are
satisfied:

(1) ®(z) =0ifand only if z € M
(2) Ift >0 and y € f(z,t), then ®(y) < &(z).

DEFINITION 3.9. Let M be a compact subset of X. A Lyapunov
function ® : W — R™ is called strict Lyapunov function for M if the
following two conditions are satisfied:

(1) Ify € f(z,¢), z ¢ M and t > 0, then ®(y) < &(z)
(2) For all y,z € Lt (z), ®(y) = ®(2).

PROPOSITION 3.5. Let a compact subset M of X be asymptotically
stable and U be a neighborhood of M. Let z € A(M). If f(z,R*) C U,
then f(V x RT) C U for some neighborhood V of z.

Proof. By the hypothesis, there is a neighborhood U; of M such
that f(U1 x R*) c U. By Proposition 3.4, f(z,[s,00)) C U for some
s € R*. We can choose a neighborhood W of z such that f(Wy,s) C Uy,
using the fact from f(z,s) C U; and f is upper semicontinuous. Let
t € [0,s]. Then f(x,t) C U. Since f is upper semicontinuous at (z,t),
there exist neighborhoods V; of z and I; of £, respectively, such that
f(Ve x I,) C U. There are finitely many 0 < ¢; ...¢, < s such that
[0,s] C UP Iy,. Put Wo = N2, V;,. Then W is an neighborhood of z.
Let y € W3 and t € [0,s]. We have f(y,t) C f(V;, x I;) C U using
t € I, for some i. Thus f(Wy x [0,s]) C U. Also, V. = Wi NW, is a
neighborhood of z. From the fact that f(V x[0,s]) C f(W2 x[0.s]) CU
and f(V x [s,00)) C f(W x [s,00)) = £(f(Wh,5),R*) C f(T1 x RY) C
U, we have f(V x R+) = f(V x [0,s]) U f(V x [s,00)) C U. O
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THEOREM 3.6. Let a compact subset M of X be asymptotically sta-
ble. Then there exists a Lyapunov function ® : A(M) — [0,1] for M.

Proof. Let D be the set of all rationals r of form k/2™ with 0 <
k/2™ < 1. By Lemma 2.1, there exists a countable neighborhood base
{U(r) : 7 € D} of M satisfying

(1) U(1) = A(M) and

(2) if 1 < ro, then U(rl) C U(’f‘2).

Define a function [ : A(M) x R — [0,1] by l(z,t) = inf{r € D :
f(z,t) C U(r)}. Let us show that [ is continuous. Let (z,t) € A(M) x
R*. There are two possibilities:

(1) Uz,t) = 0; Give any € > 0 we can choose an r € D such that r <
e and f(z,t) C U(r). Since f is upper semicontinuous at (z,t),
there exists a neighborhood A of (z,t) such that f(y,s) C U(r)
for all (y,s) € A. We have [(A) C (—¢,¢). Thus [ is continuous
at (z,t).

(2) l(z,t) > 0; Give any € > 0 we can choose an 71,72 € D such that
lz,t)—e <711 <l(z,t) <ry <l(z,t)+ecand f(z,t) C U(ry). We
have f(z,t) ¢ U(ry), that is, f(z,t) N (X — U(r1)) # 0. Since f
is lower semicontinuous at (z,t) there exists a neighborhood A of
(x,1) such that £(y, )N (X T (r)) # 0, that s, (3, 5) & U(r1)
for all (y,s) € A. Also, there exists a neighborhood B of (x,t)
such that f(y,s) C U(rz) for all (y,s) C B, using the fact from
that f is upper semicontinuous.Let V.= AN B. Then V is a
neighborhood of (z,t) and (V) C ({(z,t) —¢,l(z,t) + €). Thus
[ is continuous at (z,t). Hence [ is a continuous function.

Define a function ® : A(M) — [0,1] by ®(z) = sup{l(z,t) : t €
R*}. Let £ € M. Given any r € D, since f(z,Rt) C M C U(r),
we have ®(z) < r. Thus ®(z) = 0. Let x € A(M) — M. There
exists 7 € D such that z ¢ U(r). Then 0 < r < I(z,0) < &(z). Let
y € f(z,t) for t € RY. Suppose that ®(y) > ®(z). We can choose
r € D such that ®(y) > r > ®(x). There exists s € R* such that
r < l(y,s). We have f(y,s) ¢ U(r). Since l(z,t+ s) < ®(z) < 7, we
have f(y,s) C f(f(z,t),s) = f(z,t+s) C U(r). This is a contradiction,
thus ®(y) < ®(z). Let us show that ® is continuous. There are three
possibilities;

(1) ®(z) = 0; Given any £ > 0, we can choose r € D such that

r < €. Since M is stable, there exists a neighborhood V of M
such that f(V x Rt) C U(r). Since V is a neighborhood of z
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and ®(V) C (—e¢,¢), ® is continuous at z € X

(2) 0 < ®(z) < 1; Given any ¢ > 0, we can choose 71,7 € D such
that ®(x) —e < 711 < ®(z) < ro < ®(z) + €. There exists
t € R such that r; < Il(z,t). We have f(x,t) ¢ U(ry, that
is, f(z,t) N (X —U(r1)) # 0. Since f is lower semicontinuous at
(x,t), there exists a neighborhood V; of z such that f(y,t)N(X —
U(ry)) # 0, that is, f(y,t) ¢ U(r1) for all y € V3. Then ®(y) >
l(y,t) > 71 > ®(z) —¢ for ally € V4. Since f(z,R?) C U(rz), by
Proposition 3.6, there exists a neighborhood V5 of z such that
f(V xR*) C U(rz). Then we have ®(y) < ry < ®(x) + ¢ for all
y €V, Let V=V, NV, Then V is a neighborhood of z and
(V) C (®(z) — e, P(z) + &). P is continuous at z.

(3) ®(z) = 1; Given any € > 0, there exists t € R* such that 1 —¢ <
l[(z,t). We can choose r € D such that 1 —e < r < [(z,t). Then
we have f(z,t) ¢ U(r), that is, f(z,t)N (X —U(r)) # 0. Since f
is lower semicontinuous at («,t), there exists a neighborhood V

of z such that f(y,t)N (X —U(r)) # 0, that is, f(y,t) ¢ U(r) for

alye V. Thuswehave 1 —e <7 <I[(z,t) < P(y) <1< 1+¢

forally € V, that is, (V) C (1—¢,1+¢). Hence @ is continuous

at z.

Therefore ® is a Lyapunov function for M. d

THEOREM 3.7. A necessary and sufficient condition for a compact
subset M of X to be asymptotically stable is that there exists a strict
Lyapunov function for M.

Proof. Necessity: Let the set M be asymptotically stable. By Theo-
rem 3.7, there exists a Lyapunov function ® : A(M) — [0,1] for M. We
define a function h : A(M) x Rt — [0,1] by h(z,t) = max{®(y) : y €
f(z,t)}. We shall prove that the following conditions are satisfied:

(1) h is continuous.

(2) h(z,t) =0 for all (z,t) € A(M) x R™.

(3) h(z,0) >0 forall z € A(M) — M.

(4) h(y,t) < h(z,t+ s) for any y € f(z,s) and t € RT.
(5) For all t > s and z € A(M), h(z,t) < h(z,s.

(6) if t — oo, then h(z,t) — 0.

To verify condition (1), let (z,t) € A(M) x R*. Then there are two
possibilities;

(a) If h(z,t) = O, given any € > 0, we can choose r € D so that
r < . Since M is stable, there exists a neighborhood V' of M such that
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F(V xR*) C U(r). For each y € f(z,t), since 0 < ®(y) < h(z,t) = 0,
we have ®(y) = 0 and so y € M. Thus f(z,t) C M. Since f(z,t) C V
and f is upper semicontinuous at (z,t), there exists a neighborhood A of
(z,t) such that f(y,s) C V for all (y,s) € A. For any z € f(y, s), since
f(z,RY) C f(VxRY) CU(r), we have ®(2) < r. Thus h(y,s) <r <e.
Hence h is continuous at (z, t).

(b) If 0 < h(z,t) < 1, given any ¢ > 0, there exists z € f(z,t) such
that h(z,t) — e < ®(2). Since ® is a continuous function, there exists
a neighborhood V' of z such that ®(w) > h(z,t) — ¢ for all w € V.
Also, there is a neighborhood A; of (z,t) such that f(y,s) NV # 0
for all (y,s) € A;, from that fact that f(z,£) NV # 0 and f is lower
semicontinuous at (z,t). For each (y,s) € A;, we have f(y,s)NV # .
Let w € f(y,s) NV. Then h(z,t) ~ ¢ < ®(w) < h(y,s). For each
a € f(z,t), since ®(a) < h(z,t) < h(z,t) +&/2, there is a neighborhood
B, of a such that ®(2) < h(z,t) +¢/2 for all z € By, UsegppnVa is a
neighborhood of f(x,t). Since f(z,t) is upper semicontinuous at (z, t),
there exists a neighborhood Az of (2,t) such that f(y,s) C Usef(zt)Va
for all (y, s) € As.

Let (y,s) € As. For any z € f(y,s) we can choose a € f(z,t) so
that z € V. Then ®(z) < h(x,t) + /2. Thus h(y,s) < h(x,t) +&/2 <
h(z,t) + . Let A= A; N A;. Then A is a neighborhood of (z,t) and
h(z,t) —e < h(y,s) < h(z,t)+¢ for all (y,s) € A. Thus h is continuous
at (z,t).

To show condition (2), let z € M and ¢t € R*. By virtue of Lyapunov
function ®, ®(x) = 0. Also, ®(y) = 0 by 0 < ®(y) < &(z) = 0 for
y € f(z,t). We conclude that h(z,t) = 0.

To prove condition (3), choose z € A(M)— M, then ®(z) > 0. Hence,
h(z,0) = ®(z) > 0 using f(z,0) = {z}.

To prove condition (4), let y € f(z,s) and t € RY. Then A(y,t) =
sup{®(2) : z € f(y,1)} < sup{®(2) : z € f(f(z,5),8)} = sup{P(2) : z €
flz,s+1t)} = h(z,s +1t).

To verify condition (5), let ¢ > s and x € A(M). There exists a
z € f(z,s) such that y € f(z,t — s)for y € f(z,t) = f(f(z,9),t — s).
Then h(z,t) < h(z,s) by ®(y) < ®(2) < h(z, s).

Finally, to verify condition (6), let ¢ > 0 and U = {z € A(M) :
®(x) < €}. For z € A(M) and a neighborhood U of M, there exists an
s € R* such that f(z,[s,c0)) C U.
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Also, y € f(z,t) C f(z,[s,00)) C U for y € f(x,t) and t > s. Hence
h(z,t) < e. We conclude that h(z,t) — 0 if t — co.

Next, define function ¥ : A(M) — R* by ¥(z) = [, e *h(z, t) dt.

We verify that ¥ is strict Lyapunov function. The continuity of ¥ is
obvious. Let z € M. By (1), h(z,t) = 0 for t € R*. Hence, ¥(z) = 0.
Let z € A(M) — M. By virtue to (3), h(z,0) > 0. Hence ¥(z) > 0. Let
y € f(z,s). Then

)= [ ends [ et tids [ et d
0 0 0
= ¥(x).

Letx € A(M)—M and y € f(z,s) for s > 0. To show that ¥(y) < ¥(x),
assume that ¥(y) = ¥(z). Then h(z, s+t) = h(z,t) for any t € R*. Put
t = ns, where n = 0,1,2,.... Then h(z,0) = h(z,ns) for given n. We
have limy,—. o h(z,ns) = 0 and h(z,0) = 0, contradicting the condition
(3) that h(z,0) > 0. Hence ¥(y) < ¥(z). Let z € A(M). By definition,
L*(xz) # 0 and LT (z) C M. Also, f(y,R") C M for y € L*(z). Hence
h(y,t) = 0 for t € R*. By virtue to the definition of ¥, ¥(y) = 0.

Sufficiency: Let a function ¥ : W C A(M) — R™ be strict Lyapunov
function. To show that M is stable, assume that there exists a neigh-
borhood Uy of M such that f(V x RT) ¢ Uy for any neighborhood V' of
M.

There exists a neighborhood U of M such that U C Uy and U is
compact.

Since f(U(1/2") x R*) ¢ U for n, there exists z, € U(1/2") and
tn € RT such that f(z,,t,) ¢ U. Let z,, — x € M. Since f(zn,[0,t,])
is connected, f(@n,[0,t,]) NOU # 0. Let yn € f(2n,[0,t,]) NOU. From
the fact that QU is compact, let y, — y € OU. Since ¥(y,) < ¥(z,),

W(y) = U Jim yo) = lim Wyn) < lim W(z,) = U(lim 2,) = V().
U(z) = 0 since x € M. We obtain that y € M, from the fact that
U(y) = 0, contradicting the fact that y ¢ M. Therefore, M is stable.
Next, let us verify that M is attractor. By Proposition 3.3, there exists
positively invariant compact neighborhood U of M such that U C W.
We obtain that f(z,R*) C U for any x € U. Since U is compact
and f(z,R*) is compact, L*(z) # 0. Now we prove that L1 (z) C M.
We shall prove this fact by assuming the opposite and arriving at a
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contradiction. Suppose that L*(z) is not subset of M. So, let y €
Lt(z) — M and z € f(y,t) for t > 0.

From the fact that ¥ is strict Lyapunov function and z € f(y,t) C
f(L*(z),t) C L*(z), we obtain that ¥(z) = ¥(y), contradicting the
condition that W(z) # ¥(y). Therefore L™ (z) C M. Also, z € A(M)
and U C A(M). Hence, M is attractor. Consequently, M is asymptoti-
cally stable. |
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