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AN EMBEDDING OF BIRGET-RHODES EXPANSION
OF GROUPS INTO A SEMIDIRECT PRODUCT

KEUNBAE CHOI AND YONGDO LM

ABSTRACT. In this paper, we prove that the Birget-Rhodes expan-
sion G® of a group G is not a semidirect product of a semilattice
by a group but it can be nicely embedded into such a semidirect
product.

1. Introduction

An inverse semigroup S is a semigroup in which for every s € §
there exists a unique element s~!, called the inverse of s, satisfying
ss™ls = 5,57 1ss71 = s71. The Wagner-Preston representation theorem
states that every inverse monoid can be embedded in a symmetric inverse
monoid I(X) on a set X, which consists of all partial bijections on the
set X under the usual operation of composition of partial functions.

In [6], Exel constructed, in a canonical way, an inverse monoid S(G)
associated to a group G defined via generators and relations. One of
main results of Exel is the one-to-one correspondence between actions
of S(G) (An action of an inverse semigroup S on the set X is a homomor-
phism from S to the symmetric inverse monoid I(X )) and the partial
actions of G, with its applications on graded C*-algebras. Moreover in
what sense S(G) is a universial inverse monoid. But in [7], Kellendonk
and Lawson realized that the inverse monoid S(G) is nothing other than
a semigroup known as the Birget-Rhodes expansion GR of the group G,
hence all algebraic information of S(G) read off the Birget-Rhodes ex-
pansion of the group G. In [4], the authors proved that if the group
G acts faithfully on a Hausdorff space X as homeomorphisms and acts
freely at an non-isolated point zg € X then G™ is isomorphic to the
inverse monoid of Mobius type of the form (Part(G, X \ {zo})). Also in
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[3], the authors proved that an inverse monoid of Mobius type can be
embedded into a semidirect product of a semilattice by a group.

It is natural to enquire that GR has a semidirect product of a semi-
lattice by a group or it can be embedded into such a semidirect product.
In this paper, we construct such a semidirect product containing an
isomorphic copy of G*.

2. The inverse monoid G®

Let S be a semigroup. For any finite sequence (sy,$2,...,8y,) of
elements s1, $2,...,8, In S. Put
P(s1,82,...,8,) :={1,81,8182,...,8182" " Sn },

where 1 is the identity of S!. Define
SR .= {(P(s1,82,---,8n),8182" " 8p) : 81,82,...,8, € S,n > 1}
with multiplication

(P(Sl,Sg, . .,Sn),8182 o Sn)(P(tl,t2, e ,tm),tltg . --tm)
= (P(sl,sz, .. .,Sn) U (8182 L Sn) . p(tl,tz, Cas ,tm),3132 <o 8ptita - tm)

where s - U = {su: U € U} for every s € S and U C S. Then S® is a
semigroup, which is called the Birget-Rhodes expansion of the semigroup
S (See [1], [2], and [10]).

For an arbitrary group G, denote by P;(G) the set of all finite subsets
of G containing the identity 1. Let ¢+ : G — G be defined by 1(g) =

({1,9}9)-
The following proposition is appeared in [2], [7], and [10]

ProrosiTION 2.1. For any group GG, we have
(i) G* ={(A,9) € PL(G) x G : g € G},
(ii) GR is generated by {1(g) : g € G},
(iii) G® is an F-inverse monoid whose maximum group image is iso-
morphic to the group G.

REMARK. In [6], Exel considered inverse monoid S(G) associated to
the group G. §(G) is the universal semigroup defined via generators and
relations as follows. To each element g in G we take a generator [g] (from
any fixed set having as many as G). For every pair of elements g,h in
G we consider the relations

(@) lg7Mlgl[h] = [g~ Igh],
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THEOREM 2.2 ([7]). The Birget-Rhodes expansion G™ is isomorphic
to the inverse monoid S(G). The mapping G > g — [g] € S(G) induces
an isomorphism from G® to S(G).

For each g in G, the element 1(g) = ({1, g},g) of G is correspond-
ing to the element [g] of S(G). We set ¢; := ({1,g},1). Then ¢, is an
idempotent in G*.

THEOREM 2.3. Every element « in GR admits a decomposition

a=€g - €,0(R),
wheren > 0 and h,g1,...,9, € G. In addition, one can assume that

(1) g; # g; for i # j,
(ii) g; # h and g; # 1 for all 7.

Proof. See Proposition 2.5 in [6]. O

If @ = €4, - - - €g,2(h), in such way that conditions (i) and (ii) of Theo-
rem 2.3 are verified, we say that « is in standard form. From Proposition
3.2 in [6], every element o of G® admits a unique standard decomposi-
tion a = €4, - - - €4,2(h) up to order of the ¢;’s.

LEMMA 2.4. Let h and ¢, ..., 9. be elements of G. Then

(1) 1(g1)e(g2) - - - 1(gn) = €gr1€g1g2 "+ €g1gz~~-gn"(9192 < Gn)-
(11) Y(h)eg, -+ €g, = €ng, ** * €ngy2(h).
(ili) €g, ---egnlz(h) =1(h)ep-1g, '+ - €41,
(iv) 2(g1)2(g7 92)2(92_1) = €g1€gy = €g2€g1-
Proof. Straightforward. a

We give an explicit way obtaining the decomposition of o € GR =
({e(g) : g € G}) in standard form.

PROPOSITION 2.5. Suppose that o = 1(g1) - -2(gn) € G®. Let h; =
g1---g; fori=1,... n. If we write

{hi :1<i<n}\{L,hp} ={w1, - ,wi}

then the decomposition of « in standard form is

o= €y, - .. € t(hn).
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Proof. By Lemma, 2.4, we have
a=¢€p ...€p_ 2 (hp).

The statement follows from the fact that the commutativity of the idem-
potents of G® and the fact that e;(g) = +(g) for all g € G. O

THEOREM 2.6. If G is a non-trivial group, then G2 is not a semidirect
product of a semilattice by a group.

Proof. Suppose that GZ is a semidirect product of a semilattice by
a group. Then for (4,g) € G¥ and (B,1) € E(G#) with g ¢ B, by
Theorem 1 of [8], there exists (C, h) € GZ such that (C,h)(h~1C,h~1) =
(B,1) and (g7'4,97)(C,h) is an idempotent. Thus g = h and C =
. But (B,g) ¢ G%. This contradicts the fact that (B,g) = (C,h) €
G%. O

We remark that although the inverse monoid G is not a semidirect
product of a semilattice by a group, we will show that it can be nicely
embedded in such a semidirect product.

3. An embedding of GZ into a semidirect product

In this section we will devote to construct an inverse monoid, which is
a semidirect product of a semilattice by a group, containing isomorphic
copies of the inverse semigroup G# and the group G.

Let G be a non-trivial group and let G? o G be the free product of
the inverse monoid GZ and the group G. For each word w = ajas - - - an
in GZ o G, we define the formal inverse w~! of w by

wl = a;la;il x al_l.
Then the congruence 7 on G# o G generated by the subset
T = {(ww lw,w) : w e G¥ « G}
U {(ww 2271 zz7lww™) tw, 2 € GZ o G}

defines the free inverse product of G% and G,
GZ «G = (G% e Q)/r.
Note that G% % G is the coproduct of GZ and G in the category of

inverse semigroups. It is known (Proposition VII.4.5 of [5]) that there
are monomorphisms

iﬁg:éﬁaal—»aTeéﬂ*G
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and
z'GzGagr-—»g'rEé%*G,

where a7t and g7t are the 7-classes containing the elements o and g,
respectively. Thus we may identify G% and G with the isomorphic
copies of their in GZ x G.

In the following we regard the inverse monoid G% and the group G
as the images of the maps iza and iq(G), respectively.

Let p be the congruence on GZ G generated by the following relation

(i) {(geg-1,2(9)) : 9 € G},
(i) {(eg9,(9)) : g € G},
(iit) {(a(1) g2(1),2(g)) : g € G},
(iv) {(«(9)1,2(9)) : g € G},
(v) {(1e(9),2(9)) : 9 € G}.

Define GZ by

G¥ = (G« G)/p.
Then C:'% is an inverse semigroup under multiplication defined by ap -
Bp = (af)p for a ;6 € G% « G because it is surmorphic image of the

inverse semigroup GZ x G.
The following will be useful for our purpose.

LEMMA 3.1. Let o = €g,€g, -+ €5,0(h) € G¥ with h € G. Then we
have

(i) (ha~la,a) € p.
(i) (ca™'h a) € p.
(iil) (1o, ) €
(iv) (al o) € p

Proof. By Lemma 2.4, we have that

hata = hi(h™ )egnegn Lt €gi€g €gy - €gat(R)
= ha(h™ )fgl €gy * * €g,0(R)
= heh—lglﬁh—lg2 e Gh—lgnGh-—l
= hGh—IGh—lgléh—lgz Tt €p-lg.,

aa”lh = €91€gs """ €9, €R€GEgy_1 ** €g P

= €g,€g, " €g €RN,
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and
o = €g,€g, €, %(R)
= Z(h)fh—lgl €p—1gy """ €p-1g,-
Since (hep-1,1(h)) € p and (exh,2(h)) € p, (i) and (i) follow from the
compatibility of p.
(iii) and (iv) are straightforward. O

We note that GZ is a monoid with the identity 1.

Now we want to show that the inverse monoid G‘? has all properties
what we want to have.

We first prove that the group G and the inverse monoid G% are
embedded into the inverse monoid GZ.

Let S be a monoid and let R be a relation on S. If a,b € S are such
that

a=zpy, b=zqy

for some z,y € S, where either (p,q) € R or (q,p) € R, we say that a is
connected to b by an elementary R-transition. The following appears at
Proposition 1.5.10 [5].

PROPOSITION 3.2. Ifa,b € S, then (a,b) is in the congruence gener-
ated by the relation R if and only if either a = b or for some natural
number n there is a sequence

a=2z1 =2 — - —2,=b
of elementary R-transitions connecting a to b.

Now we return to our inverse monoid G?%. Define a map from GZUG
to GZ by )
. a ifaecG%
o) = :
g) fa=geq.
Then # induces a map r°: GZ ¢ G — G% by
r°(a) = #(a1) - - 7(an),
for a reduced word a = a1---a, € GZ o G. Note that r° acts as the
identity on G# and r°(a™!) = r°(a)~! for all o € GZ & G. However, r°
is not a homomorphism since (gh) # «(g):(h) in general.
PrOPOSITION 3.3. There exists a function
r:GZxG— G%
such that
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(i) r acts as the identity on GZ,
(i) r(gr) = o(g) for all g € G,
(iii) r{zpyr) = r(zr)r(pr)r(y7) = r(zqyT)
for all z,y € G¥ @ G and all (p,q) € R.

Proof. We define r : GZ « G — GZ% by
r(ar) =r°(a1)r(ag) - - -7°(an)

for a reduced word & = ajaz - - - a, € GZ o G. Since the map 7° is not a
homomorphism, it needs to check that r is well-defined. We first prove
that r(wwlwr) = r(wr) and r(ww'zz717) = r(zz lww™17) for any
words w, z € G¥ e G. It is obvious for words with length one.

Letw=ay- -an,z=">by- by, be reduced words in GZ o (3 such that
n,m> 1.

(i) r(ww~twr) = r(wr): Suppose that a1 = g and a,, = h in G. Then
the reduced word of ww™lw is

ww lw = guutuh,

where u = ag---an—1. Thus r(ww twr) = o{g)r°(w)r°(uw=H)re(uw)(h).
Since r°(u~!) = 7°(u) "}, it follows that

riww lwr) = 1(9)r° (w)r® (u) " tr° (u)a(h)
= o(g)r°(u)y(h)

= r(wr).

By the same argument, the equation r(ww™'wr) = r(w7) holds for the
cases (a1, an) € GZ x G% (a1,a,) € GZ x G and (a1, a,) € G x GZ.

(i) r(ww 227 1) = r(zz7 lww17): To show this equality, we only
prove the case when both a; and b; are in G. The proof of remaining
cases follows from the same argument. Let a3 = ¢,b; = h. Then the
reduced words of ww'zz~! and zz7! !

ww~ - are
wwlzz7l = gulana; HuT (g7 h)u(byeb v AT
zz7lww™t = hv(bmb;f)v_l(h_lg)u(ana,jl)u"lg_l,

where u = ag - ap-1,v = b - - - byy_1. Note that

r(u(anagl)u”lT) =7r° (u)r"(ana;l)ro(u)_1

and
7 (V(bmby Yo 7) = 7°(0)r° (bmby, )r°(v) ™
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are idempotents of GZ, say e and f respectively. Then

rlww tzz7r) = w(g)er(g ™ h) fa(h™h),
r(zzww ™) = u(h)f(h g)er(g™h).

By Lemma 2.4, we may write 1(g)e = €"1(g) and fa(h™1) = o(h71) f! for
some idempotents ¢’ and f’ of G%. By taking the inverse, we have that
er(g™!) = 1(g71)e’ and 2(h) f = f's(h). It then follows that

rlwwzz7ir) = z(g)ez(g‘lh)fz(h_l)
= e's(g)u(g  R)e(h ) f
= eenegf’ by Lemma 2.4 (iv)
= fli(h)s(h " g)u(g™ )€ by Lemma 2.4 (iv)

= o(h) fo(h™"g)er(g™")
= r(zz lww™17).

To complete the proof that r is well-defined, it is enough to show
that r°(zpy) = r°(zqy) for any (p,q) € T and any z,y € G% U G by
Proposition 3.2. When (p,q) = (ww™'w,w) there is no difficulty to
prove the identity 7°(zpy) = r°(zqy) for all z,y € G# UG. Suppose that
(p,q) = (ww 2271, 227 'ww™?). We consider the following two cases

(other cases are followed by the same argument):
(alabl’x,y) = (g7h7k7l) (gah‘akalEG)’
(alablax7y) = (g,h,:l:,l) (wEé'%,g,h,lEG).

Case 1. (a1,b1,z,y) = (g9,h, k1) (9,h,k,l € G). In this case, the
reduced words of zww'2z7ly and zzz lwwly are

swwzz7ly = (kg)ulana; u (g7 R)u(bmbiy o AT,

zzz" lwwly = (kR)v(bmbr v (R g)u(anay Hu (g7 M),

Thus we have

ro(zwwlzz7ly) = a(kg)er(g™ h) fo(hT),
ro(zzz fww™ly) = a(kh)fu(h " g)er(g ),

where u, v, e and f are elements in previous proof. By Lemma 2.4 (iii),
we may write e2(g h) = 1(g~ h)e’ and €' fa(h~) = 1(hl)e” for some
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idempotents e’ and ¢” of G#. Then
ro(zwwtzz"ty) = o(kg)er(gih) fa(h )
= u(kg)e(g~ h)e fulh™11)
= o(kg)e(g h)u(h™1)e”

= eggernt(kl)e” by Lemma 2.4 (i)
= eggr(kh)e(h)e” by Lemma 2.4 (i)
= 1(kR)ep-1,0(R " 1)e”

(

kh)ep-1,¢ fo(h 1)
kh)e' fep-1g1(h 1)
u(kh)
uk

H

fe'i(h tg)(g™ 1) by Lemma 2.4 (i)

h)fuh™ g)es(g™10)
-1

ro(zzz " tww ™ ly).

Case 2. (ay,b,z,y) = (9,h,2,1) (z € G%,g,h,l € @). In this case

we have
“lzzTly) = wmig)elg ) fo(h M)
= zo(g)e(g~ h)e fu(h 1)
= z(g)u(g™ e(h)u(h D)€"
= zepegr(l)e’ (= wepegent(l)e”)
= pepegr(h)(h™)e”
)u(g~ R)e(h ™ )€
= za(h)a(h ™ g)e(g™  R)e(h ™ )e”
= zu(h)p(h " g)u(g™! )6 Fo(h™H)

r°(zww

= zepi(g

(h

(h)fe's(h ™ g)(g™ h)a(h ™M)
z(h) fe'(h ™ g)u(g ™M)

(

(

=t

Il

1 h)fl(h’ gelg™l)

(o}

r(zzz lww™y).

Here e, f,e¢' and e” are idempotents of GZ in case 1. Therefore, we
conclude that the map r is well-defined.

It is easy to see that the mapping r acts as the identity on GZ# and
r(g7) = (g) for all g € G.
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Finally, to prove the last statement of the Theorem, it suffices to
restrict our attention to the case x,y € G UG. We only prove the case
(p, @) = (geg-1,2(g)). The other cases are similar.

Case 1. z,y € G%. The reduced word of zpy is Tge,-1y and hence
r(zpyr) = 21(g)eg-1y = m(g)y = r(@7)r(pr)r(yr).

Case 2. z € é"%,y = h € G. Then zpy = zge,~1h and hence
r(zpyr) = z1(g)eg-11(h) = z(g)u(h) = r(zT)r(pr)r(yT).

Case 3. z = h € G,y € G%. The reduced word of zpy is hgeg—1y
and hence 7(zpyr) = 2(hg)e;—1y = v(h)i(g)y = r(z7)r(pr)r(yT).

Case 4. z = h,y = k € G. In this case 2py = hge,—1k and r(zpyT) =
1(hg)eg—11(k) = 1(h)e(g)u(k) = r(z7)r(pr)r(yT). O

Using the (retractive) function r on GZ % G, we have

PROPOSITION 3.4. The inverse monoid G“? contains isomorphic copies
of G and G%.

Proof. Let ¥ : GZ + G — (G% « G)/p = GZ be the natural map.
We prove that 1 is injective on G and G%. Suppose that gip = gap for
g1, 92 € G. Then one may easily show that for any (p,q) € RUR™! and
any z,y € GZ x G, zpy ¢ G and zqy ¢ G. By Proposition 3.2, g1 = go.

Next, suppose that « and § are elements of GZ such that (ar)p =
(87)p. Then there exist z1,...,Zn, y1,--.,yn € GZ o G and

(p17QI)7 BRI (pn;Qn) € RU R_l
giving a sequence
QT = L1P1YT — T1q1T2T = ToPalyoT — -+ — TnQnlnT = BT

of elementary R-transitions connecting ar to 7. Since r(at) = « and
r(B7) = B3, by Proposition 3.3, it follows that

a=r(ar) = r(@ipinT)=r(T1qnT)
= r(zopayeT) = -+ = 1(TagnynT) = 7(87) = B.
O

We note that the inverse monoid G? and the group G are embedded
into the inverse monoid GZ via the maps

G% — Lo (G*) - Y(iga (G*)) c GZ,
G —i6(G) = v(ic(@)) C G¥.
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Next, we will show that the inverse monoid GZ admits a semidirect
product of a semilattice by a group.

LEMMA 3.5. Let <g and <7 be the natural partial orders in inverse
semigroups S and T, and let f be a homomorphism from S to T. If
a <g b implies f(a) <r f(b). If f is injective and f(a) <t f(b) then
a SS b.

Proof. Notice that f preserves idempotent elements. If a <g b in S,
then there exists an idempotent ¢ in S such that a = eb. Now f(a) =
f(e)f(b) and f(e) is an idempotent in 7. This implies f(a) <7 f(b).

Suppose that f is a monomorphism and suppose that f(a) <r f(b).
Then f(a) = ef(b) for some idempotent e in T. This implies that f(a) =
fla)f(a=1)f(b) = f(aa™'b). Since f is injective, a = (aa~1)b and hence
a<gb. O

PROPOSITION 3.6. The inverse monoid é:? is E-unitary, and every
element of GZ is beneath a unique element of G.

Proof. We first observe that every element ap of G# with o € G#
is beneath a unique element gp of GZ with g € G. Suppose that o =
€g1€45 " €g22(9) is an element of G¥. By Lemma 3.1,

(aa™)p-gp = (aa™'g)p = ap.
Since (aa™!)p is an idempotent, we have ap < gp. Now suppose that
ap is bounded above by an another element hp € GZ with h € G.
Then clearly exa is bounded above by +(g) in the semigroup G¥#. Since
ap < hp, (ena)p < (eph)p = 1(h)p. By Lemma 3.5, ey < 2(h) in the
semigroup G#. Thus 1(g) = 2(h) from Proposition 2.1 (iii).

Let ap = (a1 ap)p=ai1p-agp---aup € C:‘? with oy € GZ U G.
Then by the remarks of the first paragraph, for each i there exists g; € G
such that a;p < g;p. By the compatibility of the order, we have ap <
(91 - gn)p- This shows that every element in GZ is bounded above by
an element of G.

Now suppose that ap is an element of GZ and is bounded above by
the elements gp, hp where g, h € G. Then r(a)p < ap < gp, hp, where r
is the retractive function on G% xG. Since r(a) € G#, by the remarks of
the first paragraph, we conclude that gp = hp. This implies that every
element in C:’fz is bounded above by a unique element of G.

Finally, we show that GZ is an E-unitary semigroup. Let ep be an
idempotent in G and ap € GZ such that ep < ap. Then (ea)p is
an idempotent G%. Pick an element g in G such that the element ap
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is bounded above by gp. Then (ea)p < ap < gp. Since (ea)p is an
idempotent element, (ec)p < 1p. Hence gp = 1p. This implies that ap
is an idempotent element of GZ . Therefore G¥ is E-unitary. 0

THEOREM 3.7. The inverse monoid GZ is isomorphic to a semidirect
product of the semilattice of idempotents of G# by the group G.

Proof. Let E* be the semilattice of idempotents of GZ. Then the
mapping defined by
G x E*3(gp,fp)—gp-fp- (g7 )p=(9fg™)p € E*

is an action of G on E*. Set S = E* x G. Then S becomes an inverse
semigroup under the multiplication

(ep, 90)(fo,hp) = ((egf9™)p, (gh)p)-
Now, we establish that the mapping
&:G¥ 35 ap— (e V)p,gp) €S,

where gp is the (unique) element of G bounding ap € GZ is an isomor-
phism between inverse semigroups. Suppose that

®(ap) = ((aa™)p,gp) = ((B67")p, hp) = 2(Bp)
for ap, Bp € GZ. Since ap < gp and Bp < hp, we have
ap=ap-a~lp-gp=(aaNp-go=(B8"")p-hp=PBp-B'p-hp = Bp.

Thus & is injective. Let (ep, gp) € S. Consider the element (eg)p = ep-gp

in GZ. Since (eg)p = ep-gp < 1p-gp = gp and since ((eg)p)- ((eg)p) ™" =

ep, the map ® maps (eg)p to (ep, gp). Thus @ is surjective.

Finally, we show that ® is a homomorphism. Let ap and [p be
elements of G’? , and let g, h € G such that ap < gp and Bp < hp. Then
(aB)p = ap-Bp is bounded above by the (unique) element (gh)p = gp-hp.
Now we also have

(@BB e )p=ap- (BB p-a”

=ap- (BB )p- (a” a)p g7 'p
=ap- (e la)p- (B8 Np-g7"p

= (aaNp-ap- (BB )p-g 'p

= (aa™Mp - (a0 )p-gp- (BB o 97 'p
= (aa™Np-gp- (BB )p-g 'p

= (e 'gBB g p.
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This shows that ® is a homomorphism. O

Set
P :={(ep,9p) € E(G¥) x G : (g7 eg)p € E(G*)}.

COROLLARY 3.8. The map ® o vy maps G% onto P, where ® is the
isomorphism in Theorem 3.7 and 1 is the natural embedding of GZ# into
G"? in Proposition 3.4. In particular, P is an inverse subsemigroup of
S=F*"xG.

Proof. Let a € G# with o < 1(g). Then o la € E(G#). By Lemma
3.1, it follows that

(g7

aatg)p

i

N N
)

!

Q

S’

>

Therefore ® o ¥(G¥) c P.
Conversely, suppose that (ep, gp) € P. Then e € E(G%) and (g teg)p
= fp for some f € E(G#). Since
(97 e 1)ge(1)p = (97 ege(1))p = fo-o(1)p = fp = (97 eg)p,
we have (ei(g))p = (e2(1)g2(1))p = (eg)p. This implies that
® o y(en(g)) = B(ex(g)p) = 2((eg)p) = (ep, gp).
This completes the proof. O
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