AN EMBEDDING OF BIRGET-RHODES EXPANSION OF GROUPS INTO A SEMIDIRECT PRODUCT

KEUNBAE CHOI AND YONGDO LIM

ABSTRACT. In this paper, we prove that the Birget-Rhodes expansion $\tilde{G}^{\mathcal{R}}$ of a group G is not a semidirect product of a semilattice by a group but it can be nicely embedded into such a semidirect product.

1. Introduction

An inverse semigroup S is a semigroup in which for every $s \in S$ there exists a unique element s^{-1} , called the inverse of s, satisfying $ss^{-1}s = s, s^{-1}ss^{-1} = s^{-1}$. The Wagner-Preston representation theorem states that every inverse monoid can be embedded in a symmetric inverse monoid I(X) on a set X, which consists of all partial bijections on the set X under the usual operation of composition of partial functions.

In [6], Exel constructed, in a canonical way, an inverse monoid $\mathcal{S}(G)$ associated to a group G defined via generators and relations. One of main results of Exel is the one-to-one correspondence between actions of $\mathcal{S}(G)$ (An action of an inverse semigroup S on the set X is a homomorphism from S to the symmetric inverse monoid I(X)) and the partial actions of G, with its applications on graded C^* -algebras. Moreover in what sense $\mathcal{S}(G)$ is a universial inverse monoid. But in [7], Kellendonk and Lawson realized that the inverse monoid $\mathcal{S}(G)$ is nothing other than a semigroup known as the Birget-Rhodes expansion $\tilde{G}^{\mathcal{R}}$ of the group G, hence all algebraic information of $\mathcal{S}(G)$ read off the Birget-Rhodes expansion of the group G. In [4], the authors proved that if the group G acts faithfully on a Hausdorff space X as homeomorphisms and acts freely at an non-isolated point $x_0 \in X$ then $\tilde{G}^{\mathcal{R}}$ is isomorphic to the inverse monoid of Möbius type of the form $\langle \operatorname{Part}(G, X \setminus \{x_0\}) \rangle$. Also in

Received October 17, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 20M18.

Key words and phrases: Birget-Rhodes expansion.

[3], the authors proved that an inverse monoid of Möbius type can be embedded into a semidirect product of a semilattice by a group.

It is natural to enquire that $\tilde{G}^{\mathcal{R}}$ has a semidirect product of a semilattice by a group or it can be embedded into such a semidirect product. In this paper, we construct such a semidirect product containing an isomorphic copy of $\tilde{G}^{\mathcal{R}}$.

2. The inverse monoid $\tilde{G}^{\mathcal{R}}$

Let S be a semigroup. For any finite sequence (s_1, s_2, \ldots, s_n) of elements s_1, s_2, \ldots, s_n in S. Put

$$P(s_1, s_2, \dots, s_n) := \{1, s_1, s_1 s_2, \dots, s_1 s_2 \cdots s_n\},$$

where 1 is the identity of S^1 . Define

$$\tilde{S}^{\mathcal{R}} := \{ (P(s_1, s_2, \dots, s_n), s_1 s_2 \cdots s_n) : s_1, s_2, \dots, s_n \in S, n \ge 1 \}$$

with multiplication

$$(P(s_1, s_2, \dots, s_n), s_1 s_2 \cdots s_n)(P(t_1, t_2, \dots, t_m), t_1 t_2 \cdots t_m)$$

$$= (P(s_1, s_2, \dots, s_n) \cup (s_1 s_2 \cdots s_n) \cdot P(t_1, t_2, \dots, t_m), s_1 s_2 \cdots s_n t_1 t_2 \cdots t_m)$$

where $s \cdot U = \{su : U \in U\}$ for every $s \in S$ and $U \subset S$. Then $\tilde{S}^{\mathcal{R}}$ is a semigroup, which is called the *Birget-Rhodes expansion* of the semigroup S (See [1], [2], and [10]).

For an arbitrary group G, denote by $\mathcal{P}_1(G)$ the set of all finite subsets of G containing the identity 1. Let $i: G \to \tilde{G}^{\mathcal{R}}$ be defined by $i(g) = (\{1, g\}, g)$.

The following proposition is appeared in [2], [7], and [10]

PROPOSITION 2.1. For any group G, we have

- (i) $\tilde{G}^{\mathcal{R}} = \{ (A, g) \in \mathcal{P}_1(G) \times G : g \in G \},$
- (ii) $\tilde{G}^{\mathcal{R}}$ is generated by $\{i(g):g\in G\}$,
- (iii) $\tilde{G}^{\mathcal{R}}$ is an F-inverse monoid whose maximum group image is isomorphic to the group G.

REMARK. In [6], Exel considered inverse monoid S(G) associated to the group G. S(G) is the universal semigroup defined via generators and relations as follows. To each element g in G we take a generator [g] (from any fixed set having as many as G). For every pair of elements g, h in G we consider the relations

(i)
$$[g^{-1}][g][h] = [g^{-1}][gh],$$

(ii)
$$[g][h][h^{-1}] = [gh][h^{-1}],$$

- (iii) [g][1] = [g],
- (iv) [1][q] = [q].

Theorem 2.2 ([7]). The Birget-Rhodes expansion $\tilde{G}^{\mathcal{R}}$ is isomorphic to the inverse monoid S(G). The mapping $G \ni g \mapsto [g] \in S(G)$ induces an isomorphism from $\tilde{G}^{\mathcal{R}}$ to $\mathcal{S}(G)$.

For each g in G, the element $i(g) = (\{1, g\}, g)$ of $\tilde{G}^{\mathcal{R}}$ is corresponding to the element [g] of $\mathcal{S}(G)$. We set $\epsilon_q := (\{1, g\}, 1)$. Then ϵ_q is an idempotent in $\tilde{G}^{\mathcal{R}}$.

Theorem 2.3. Every element α in $\tilde{G}^{\mathcal{R}}$ admits a decomposition

$$\alpha = \epsilon_{g_1} \cdots \epsilon_{g_n} \imath(h),$$

where $n \geq 0$ and $h, g_1, \ldots, g_n \in G$. In addition, one can assume that

- (i) $g_i \neq g_j$ for $i \neq j$,
- (ii) $q_i \neq h$ and $q_i \neq 1$ for all i.

Proof. See Proposition 2.5 in [6].

If $\alpha = \epsilon_{q_1} \cdots \epsilon_{q_n} i(h)$, in such way that conditions (i) and (ii) of Theorem 2.3 are verified, we say that α is in standard form. From Proposition 3.2 in [6], every element α of $\tilde{G}^{\mathcal{R}}$ admits a unique standard decomposition $\alpha = \epsilon_{q_1} \cdots \epsilon_{q_n} i(h)$ up to order of the ϵ_g 's.

LEMMA 2.4. Let h and g_1, \ldots, g_n be elements of G. Then

- (i) $i(g_1)i(g_2)\cdots i(g_n) = \epsilon_{g_1}\epsilon_{g_1g_2}\cdots \epsilon_{g_1g_2\cdots g_n}i(g_1g_2\cdots g_n).$
- (ii) $i(h)\epsilon_{g_1}\cdots\epsilon_{g_n} = \epsilon_{hg_1}\cdots\epsilon_{hg_n}i(h)$. (iii) $\epsilon_{g_1}\cdots\epsilon_{g_n}i(h) = i(h)\epsilon_{h^{-1}g_1}\cdots\epsilon_{h^{-1}g_n}$.
- (iv) $i(g_1)i(g_1^{-1}g_2)i(g_2^{-1}) = \epsilon_{q_1}\epsilon_{q_2} = \epsilon_{q_2}\epsilon_{g_1}$.

Proof. Straightforward.

We give an explicit way obtaining the decomposition of $\alpha \in \tilde{G}^{\mathcal{R}}$ $\langle \{i(q): q \in G\} \rangle$ in standard form.

PROPOSITION 2.5. Suppose that $\alpha = i(g_1) \cdots i(g_n) \in \tilde{G}^{\mathcal{R}}$. Let $h_i =$ $g_1 \cdots g_i$ for $i = 1, \ldots, n$. If we write

$${h_i: 1 \leq i \leq n} \setminus {1, h_n} = {w_1, \cdots, w_k}$$

then the decomposition of α in standard form is

$$\alpha = \epsilon_{w_1} \dots \epsilon_{w_k} \imath(h_n).$$

Proof. By Lemma 2.4, we have

$$\alpha = \epsilon_{h_1} \dots \epsilon_{h_{n-1}} \imath(h_n).$$

The statement follows from the fact that the commutativity of the idempotents of $\tilde{G}^{\mathcal{R}}$ and the fact that $\epsilon_q i(g) = i(g)$ for all $g \in G$.

THEOREM 2.6. If G is a non-trivial group, then $\tilde{G}^{\mathcal{R}}$ is not a semidirect product of a semilattice by a group.

Proof. Suppose that $\tilde{G}^{\mathscr{R}}$ is a semidirect product of a semilattice by a group. Then for $(A,g)\in \tilde{G}^{\mathscr{R}}$ and $(B,1)\in E(\tilde{G}^{\mathscr{R}})$ with $g\notin B$, by Theorem 1 of [8], there exists $(C,h)\in \tilde{G}^{\mathscr{R}}$ such that $(C,h)(h^{-1}C,h^{-1})=(B,1)$ and $(g^{-1}A,g^{-1})(C,h)$ is an idempotent. Thus g=h and C=B. But $(B,g)\notin \tilde{G}^{\mathscr{R}}$. This contradicts the fact that $(B,g)=(C,h)\in \tilde{G}^{\mathscr{R}}$.

We remark that although the inverse monoid $\tilde{G}^{\mathcal{R}}$ is not a semidirect product of a semilattice by a group, we will show that it can be nicely embedded in such a semidirect product.

3. An embedding of $\tilde{G}^{\mathscr{R}}$ into a semidirect product

In this section we will devote to construct an inverse monoid, which is a semidirect product of a semilattice by a group, containing isomorphic copies of the inverse semigroup $\tilde{G}^{\mathscr{R}}$ and the group G.

Let G be a non-trivial group and let $\tilde{G}^{\mathscr{R}} \bullet G$ be the free product of the inverse monoid $\tilde{G}^{\mathscr{R}}$ and the group G. For each word $w = a_1 a_2 \cdots a_n$ in $\tilde{G}^{\mathscr{R}} \bullet G$, we define the formal inverse w^{-1} of w by

$$w^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_1^{-1}.$$

Then the congruence au on $\tilde{G}^{\mathscr{R}} \bullet G$ generated by the subset

$$\begin{split} \mathbf{T} &= \{(ww^{-1}w, w) : w \in \tilde{G}^{\mathscr{R}} \bullet G\} \\ &\quad \cup \{(ww^{-1}zz^{-1}, zz^{-1}ww^{-1}) : w, z \in \tilde{G}^{\mathscr{R}} \bullet G\} \end{split}$$

defines the free inverse product of $\tilde{G}^{\mathcal{R}}$ and G,

$$\tilde{G}^{\mathcal{R}} * G = (\tilde{G}^{\mathcal{R}} \bullet G) / \tau.$$

Note that $\tilde{G}^{\mathscr{R}}*G$ is the coproduct of $\tilde{G}^{\mathscr{R}}$ and G in the category of inverse semigroups. It is known (Proposition VII.4.5 of [5]) that there are monomorphisms

$$i_{\tilde{G}\mathscr{R}}: \tilde{G}^{\mathscr{R}} \ni \alpha \mapsto \alpha \tau \in \tilde{G}^{\mathscr{R}} * G$$

and

$$i_G: G \ni g \mapsto g\tau \in \tilde{G}^{\mathcal{R}} * G$$

where $\alpha \tau$ and $g\tau$ are the τ -classes containing the elements α and g, respectively. Thus we may identify $\tilde{G}^{\mathscr{R}}$ and G with the isomorphic copies of their in $\tilde{G}^{\mathscr{R}} * G$.

In the following we regard the inverse monoid $\tilde{G}^{\mathcal{R}}$ and the group G as the images of the maps $i_{\tilde{G}^{\mathcal{R}}}$ and $i_{G}(G)$, respectively.

Let ρ be the congruence on $\tilde{G}^{\mathcal{R}}*G$ generated by the following relation \mathbf{R} :

- (i) $\left\{ \left(g \epsilon_{g^{-1}}, \imath(g) \right) : g \in G \right\},$ (ii) $\left\{ \left(\epsilon_{g} g, \imath(g) \right) : g \in G \right\},$ (iii) $\left\{ \left(\imath(1) g \imath(1), \imath(g) \right) : g \in G \right\},$ (iv) $\left\{ \left(\imath(g) 1, \imath(g) \right) : g \in G \right\},$
- (iv) $\{(i(g)1, i(g)) : g \in G\},\$ (v) $\{(1i(g), i(g)) : g \in G\}.$

Define $\tilde{G}_{\star}^{\mathscr{R}}$ by

$$\tilde{G}_*^{\mathscr{R}} = (\tilde{G}^{\mathscr{R}} * G)/\rho.$$

Then $\tilde{G}_*^{\mathscr{R}}$ is an inverse semigroup under multiplication defined by $\alpha\rho$. $\beta\rho=(\alpha\beta)\rho$ for $\alpha,\beta\in\tilde{G}^{\mathscr{R}}*G$ because it is surmorphic image of the inverse semigroup $\tilde{G}^{\mathscr{R}}*G$.

The following will be useful for our purpose.

LEMMA 3.1. Let $\alpha = \epsilon_{g_1} \epsilon_{g_2} \cdots \epsilon_{g_n} \imath(h) \in \tilde{G}^{\mathscr{R}}$ with $h \in G$. Then we have

- (i) $(h\alpha^{-1}\alpha, \alpha) \in \rho$.
- (ii) $(\alpha \alpha^{-1}h, \alpha) \in \rho$.
- (iii) $(1 \alpha, \alpha) \in \rho$.
- (iv) $(\alpha 1, \alpha) \in \rho$.

Proof. By Lemma 2.4, we have that

$$h\alpha^{-1}\alpha = h i(h^{-1})\epsilon_{g_n}\epsilon_{g_{n-1}}\cdots\epsilon_{g_1}\epsilon_{g_1}\epsilon_{g_2}\cdots\epsilon_{g_n}i(h)$$

$$= h i(h^{-1})\epsilon_{g_1}\epsilon_{g_2}\cdots\epsilon_{g_n}i(h)$$

$$= h\epsilon_{h^{-1}g_1}\epsilon_{h^{-1}g_2}\cdots\epsilon_{h^{-1}g_n}\epsilon_{h^{-1}}$$

$$= h\epsilon_{h^{-1}}\epsilon_{h^{-1}g_1}\epsilon_{h^{-1}g_2}\cdots\epsilon_{h^{-1}g_n},$$

$$\alpha\alpha^{-1}h = \epsilon_{g_1}\epsilon_{g_2}\cdots\epsilon_{g_n}\epsilon_{h}\epsilon_{g_n}\epsilon_{g_{n-1}}\cdots\epsilon_{g_1}h$$

$$= \epsilon_{g_1}\epsilon_{g_2}\cdots\epsilon_{g_n}\epsilon_{h}h,$$

and

$$\alpha = \epsilon_{g_1} \epsilon_{g_2} \cdots \epsilon_{g_n} i(h)$$

= $i(h) \epsilon_{h^{-1} g_1} \epsilon_{h^{-1} g_2} \cdots \epsilon_{h^{-1} g_n}$.

Since $(h\epsilon_{h^{-1}}, \iota(h)) \in \rho$ and $(\epsilon_h h, \iota(h)) \in \rho$, (i) and (ii) follow from the compatibility of ρ .

We note that $\tilde{G}_*^{\mathscr{R}}$ is a monoid with the identity 1.

Now we want to show that the inverse monoid $\tilde{G}_*^{\mathscr{R}}$ has all properties what we want to have.

We first prove that the group G and the inverse monoid $\tilde{G}^{\mathcal{R}}$ are embedded into the inverse monoid $\tilde{G}^{\mathcal{R}}$.

Let S be a monoid and let R be a relation on S. If $a, b \in S$ are such that

$$a = xpy, \quad b = xqy$$

for some $x, y \in S$, where either $(p, q) \in R$ or $(q, p) \in R$, we say that a is connected to b by an *elementary R-transition*. The following appears at Proposition I.5.10 [5].

PROPOSITION 3.2. If $a, b \in S$, then (a, b) is in the congruence generated by the relation R if and only if either a = b or for some natural number n there is a sequence

$$a = z_1 \rightarrow z_2 \rightarrow \cdots \rightarrow z_n = b$$

of elementary R-transitions connecting a to b.

Now we return to our inverse monoid $\tilde{G}^{\mathscr{R}}$. Define a map from $\tilde{G}^{\mathscr{R}} \cup G$ to $\tilde{G}^{\mathscr{R}}$ by

$$\hat{r}(\alpha) = \begin{cases} \alpha & \text{if } \alpha \in \tilde{G}^{\mathcal{R}} \\ i(g) & \text{if } \alpha = g \in G. \end{cases}$$

Then \hat{r} induces a map $r^{\circ}: \tilde{G}^{\mathscr{R}} \bullet G \to \tilde{G}^{\mathscr{R}}$ by

$$r^{\circ}(\alpha) = \hat{r}(a_1) \cdots \hat{r}(a_n),$$

for a reduced word $\alpha = a_1 \cdots a_n \in \tilde{G}^{\mathscr{R}} \bullet G$. Note that r° acts as the identity on $\tilde{G}^{\mathscr{R}}$ and $r^{\circ}(\alpha^{-1}) = r^{\circ}(\alpha)^{-1}$ for all $\alpha \in \tilde{G}^{\mathscr{R}} \bullet G$. However, r° is not a homomorphism since $\iota(gh) \neq \iota(g)\iota(h)$ in general.

Proposition 3.3. There exists a function

$$r: \tilde{G}^{\mathscr{R}} \ast G \to \tilde{G}^{\mathscr{R}}$$

such that

- (i) r acts as the identity on $\tilde{G}^{\mathcal{R}}$,
- (ii) $r(g\tau) = i(g)$ for all $g \in G$,
- (iii) $r(xpy\tau) = r(x\tau)r(p\tau)r(y\tau) = r(xqy\tau)$

for all $x, y \in \tilde{G}^{\mathcal{R}} \bullet G$ and all $(p, q) \in \mathbf{R}$.

Proof. We define $r: \tilde{G}^{\mathscr{R}} * G \to \tilde{G}^{\mathscr{R}}$ by

$$r(\alpha \tau) = r^{\circ}(a_1)r^{\circ}(a_2)\cdots r^{\circ}(a_n)$$

for a reduced word $\alpha = a_1 a_2 \cdots a_n \in \tilde{G}^{\mathscr{R}} \bullet G$. Since the map r° is not a homomorphism, it needs to check that r is well-defined. We first prove that $r(ww^{-1}w\tau) = r(w\tau)$ and $r(ww^{-1}zz^{-1}\tau) = r(zz^{-1}ww^{-1}\tau)$ for any words $w, z \in \tilde{G}^{\mathscr{R}} \bullet G$. It is obvious for words with length one.

Let $w = a_1 \cdots a_n, z = b_1 \cdots b_m$ be reduced words in $\tilde{G}^{\mathscr{R}} \bullet G$ such that n, m > 1.

(i) $r(ww^{-1}w\tau) = r(w\tau)$: Suppose that $a_1 = g$ and $a_n = h$ in G. Then the reduced word of $ww^{-1}w$ is

$$ww^{-1}w = guu^{-1}uh,$$

where $u = a_2 \cdots a_{n-1}$. Thus $r(ww^{-1}w\tau) = i(g)r^{\circ}(u)r^{\circ}(u^{-1})r^{\circ}(u)i(h)$. Since $r^{\circ}(u^{-1}) = r^{\circ}(u)^{-1}$, it follows that

$$r(ww^{-1}w\tau) = i(g)r^{\circ}(u)r^{\circ}(u)^{-1}r^{\circ}(u)i(h)$$
$$= i(g)r^{\circ}(u)i(h)$$
$$= r(w\tau).$$

By the same argument, the equation $r(ww^{-1}w\tau) = r(w\tau)$ holds for the cases $(a_1, a_n) \in \tilde{G}^{\mathscr{R}} \times \tilde{G}^{\mathscr{R}}, (a_1, a_n) \in \tilde{G}^{\mathscr{R}} \times G$ and $(a_1, a_n) \in G \times \tilde{G}^{\mathscr{R}}$.

(ii) $r(ww^{-1}zz^{-1}\tau) = r(zz^{-1}ww^{-1}\tau)$: To show this equality, we only prove the case when both a_1 and b_1 are in G. The proof of remaining cases follows from the same argument. Let $a_1 = g, b_1 = h$. Then the reduced words of $ww^{-1}zz^{-1}$ and $zz^{-1}ww^{-1}$ are

$$ww^{-1}zz^{-1} = gu(a_na_n^{-1})u^{-1}(g^{-1}h)v(b_mb_m^{-1})v^{-1}h^{-1}$$

$$zz^{-1}ww^{-1} = hv(b_mb_m^{-1})v^{-1}(h^{-1}g)u(a_na_n^{-1})u^{-1}g^{-1},$$

where $u = a_2 \cdots a_{n-1}, v = b_2 \cdots b_{m-1}$. Note that

$$r(u(a_n a_n^{-1})u^{-1}\tau) = r^{\circ}(u)r^{\circ}(a_n a_n^{-1})r^{\circ}(u)^{-1}$$

and

$$r(v(b_m b_m^{-1})v^{-1}\tau) = r^{\circ}(v)r^{\circ}(b_m b_m^{-1})r^{\circ}(v)^{-1}$$

are idempotents of $\tilde{G}^{\mathcal{R}}$, say e and f respectively. Then

$$\begin{array}{rcl} r(ww^{-1}zz^{-1}\tau) & = & \imath(g)e\imath(g^{-1}h)f\imath(h^{-1}), \\ r(zz^{-1}ww^{-1}\tau) & = & \imath(h)f\imath(h^{-1}g)e\imath(g^{-1}). \end{array}$$

By Lemma 2.4, we may write i(g)e = e'i(g) and $fi(h^{-1}) = i(h^{-1})f'$ for some idempotents e' and f' of $\tilde{G}^{\mathcal{R}}$. By taking the inverse, we have that $ei(g^{-1}) = i(g^{-1})e'$ and i(h)f = f'i(h). It then follows that

$$\begin{split} r(ww^{-1}zz^{-1}\tau) &= \imath(g)e\imath(g^{-1}h)f\imath(h^{-1}) \\ &= e'\imath(g)\imath(g^{-1}h)\imath(h^{-1})f' \\ &= e'\epsilon_h\epsilon_gf' & \text{by Lemma 2.4 (iv)} \\ &= f'\imath(h)\imath(h^{-1}g)\imath(g^{-1})e' & \text{by Lemma 2.4 (iv)} \\ &= \imath(h)f\imath(h^{-1}g)e\imath(g^{-1}) \\ &= r(zz^{-1}ww^{-1}\tau). \end{split}$$

To complete the proof that r is well-defined, it is enough to show that $r^{\circ}(xpy) = r^{\circ}(xqy)$ for any $(p,q) \in \mathbf{T}$ and any $x,y \in \tilde{G}^{\mathscr{R}} \cup G$ by Proposition 3.2. When $(p,q) = (ww^{-1}w,w)$ there is no difficulty to prove the identity $r^{\circ}(xpy) = r^{\circ}(xqy)$ for all $x,y \in \tilde{G}^{\mathscr{R}} \cup G$. Suppose that $(p,q) = (ww^{-1}zz^{-1}, zz^{-1}ww^{-1})$. We consider the following two cases (other cases are followed by the same argument):

$$(a_1, b_1, x, y) = (g, h, k, l) (g, h, k, l \in G),$$

$$(a_1, b_1, x, y) = (g, h, x, l) (x \in \tilde{G}^{\mathscr{R}}, g, h, l \in G).$$

Case 1. $(a_1,b_1,x,y)=(g,h,k,l)$ $(g,h,k,l\in G)$. In this case, the reduced words of $xww^{-1}zz^{-1}y$ and $xzz^{-1}ww^{-1}y$ are

$$\begin{array}{rcl} xww^{-1}zz^{-1}y & = & (kg)u(a_na_n^{-1})u^{-1}(g^{-1}h)v(b_mb_m^{-1})v^{-1}(h^{-1}l), \\ xzz^{-1}ww^{-1}y & = & (kh)v(b_mb_m^{-1})v^{-1}(h^{-1}g)u(a_na_n^{-1})u^{-1}(g^{-1}l). \end{array}$$

Thus we have

$$r^{\circ}(xww^{-1}zz^{-1}y) = \imath(kg)e\imath(g^{-1}h)f\imath(h^{-1}l),$$

 $r^{\circ}(xzz^{-1}ww^{-1}y) = \imath(kh)f\imath(h^{-1}g)e\imath(g^{-1}l),$

where u, v, e and f are elements in previous proof. By Lemma 2.4 (iii), we may write $ei(g^{-1}h) = i(g^{-1}h)e'$ and $e'fi(h^{-1}l) = i(h^{-1}l)e''$ for some

idempotents e' and e'' of $\tilde{G}^{\mathcal{R}}$. Then

$$\begin{split} r^{\circ}(xww^{-1}zz^{-1}y) &= \imath(kg)e\imath(g^{-1}h)f\imath(h^{-1}l) \\ &= \imath(kg)\imath(g^{-1}h)e'f\imath(h^{-1}l) \\ &= \imath(kg)\imath(g^{-1}h)\imath(h^{-1}l)e'' \\ &= \epsilon_{kg}\epsilon_{kh}\imath(kl)e'' \qquad \text{by Lemma 2.4 (i)} \\ &= \epsilon_{kg}\imath(kh)\imath(h^{-1}l)e'' \qquad \text{by Lemma 2.4 (i)} \\ &= \imath(kh)\epsilon_{h^{-1}g}\imath(h^{-1}l)e'' \\ &= \imath(kh)\epsilon_{h^{-1}g}\imath(h^{-1}l) \\ &= \imath(kh)e'f\epsilon_{h^{-1}g}\imath(h^{-1}l) \\ &= \imath(kh)fe'\imath(h^{-1}g)\imath(g^{-1}l) \qquad \text{by Lemma 2.4 (i)} \\ &= \imath(kh)f\imath(h^{-1}g)e\imath(g^{-1}l) \\ &= r^{\circ}(xzz^{-1}ww^{-1}y). \end{split}$$

Case 2. $(a_1, b_1, x, y) = (g, h, x, l)$ $(x \in \tilde{G}^{\mathcal{R}}, g, h, l \in G)$. In this case we have

$$r^{\circ}(xww^{-1}zz^{-1}y) = xi(g)ei(g^{-1}h)fi(h^{-1}l)$$

$$= xi(g)i(g^{-1}h)e'fi(h^{-1}l)$$

$$= xi(g)i(g^{-1})i(h)i(h^{-1}l)e''$$

$$= x\epsilon_h\epsilon_gi(l)e''(= x\epsilon_h\epsilon_g\epsilon_hi(l)e'')$$

$$= x\epsilon_h\epsilon_gi(h)i(h^{-1}l)e''$$

$$= x\epsilon_hi(g)i(g^{-1}h)i(h^{-1}l)e''$$

$$= xi(h)i(h^{-1}g)i(g^{-1}h)i(h^{-1}l)e''$$

$$= xi(h)i(h^{-1}g)i(g^{-1}h)e'fi(h^{-1}l)$$

$$= xi(h)fe'i(h^{-1}g)i(g^{-1}h)i(h^{-1}l)$$

$$= xi(h)fe'i(h^{-1}g)i(g^{-1}l)$$

$$= xi(h)fi(h^{-1}g)ei(g^{-1}l)$$

$$= xi(h)fi(h^{-1}g)ei(g^{-1}l)$$

$$= r^{\circ}(xzz^{-1}ww^{-1}y).$$

Here e, f, e' and e'' are idempotents of $\tilde{G}^{\mathscr{R}}$ in case 1. Therefore, we conclude that the map r is well-defined.

It is easy to see that the mapping r acts as the identity on $\tilde{G}^{\mathcal{R}}$ and $r(g\tau) = i(g)$ for all $g \in G$.

Finally, to prove the last statement of the Theorem, it suffices to restrict our attention to the case $x, y \in \tilde{G}^{\mathscr{R}} \cup G$. We only prove the case $(p,q) = (g\epsilon_{q^{-1}}, i(g))$. The other cases are similar.

Case 1. $x, y \in \tilde{G}^{\mathscr{R}}$. The reduced word of xpy is $xg\epsilon_{g^{-1}}y$ and hence $r(xpy\tau) = xi(g)\epsilon_{g^{-1}}y = xi(g)y = r(x\tau)r(p\tau)r(y\tau)$.

Case 2. $x \in \tilde{G}^{\mathcal{R}}, y = h \in G$. Then $xpy = xg\epsilon_{g^{-1}}h$ and hence $r(xpy\tau) = xi(g)\epsilon_{g^{-1}}i(h) = xi(g)i(h) = r(x\tau)r(p\tau)r(y\tau)$.

Case 3. $x = h \in G, y \in \tilde{G}^{\mathscr{R}}$. The reduced word of xpy is $hg\epsilon_{g^{-1}}y$ and hence $r(xpy\tau) = i(hg)\epsilon_{g^{-1}}y = i(h)i(g)y = r(x\tau)r(p\tau)r(y\tau)$.

Case 4.
$$x = h, y = k \in G$$
. In this case $xpy = hg\epsilon_{g^{-1}}k$ and $r(xpy\tau) = i(hg)\epsilon_{g^{-1}}i(k) = i(h)i(g)i(k) = r(x\tau)r(p\tau)r(y\tau)$.

Using the (retractive) function r on $\tilde{G}^{\mathcal{A}} * G$, we have

PROPOSITION 3.4. The inverse monoid $\tilde{G}_*^{\mathscr{R}}$ contains isomorphic copies of G and $\tilde{G}^{\mathscr{R}}$.

Proof. Let $\psi: \tilde{G}^{\mathscr{R}} * G \to (\tilde{G}^{\mathscr{R}} * G)/\rho = \tilde{G}_*^{\mathscr{R}}$ be the natural map. We prove that ψ is injective on G and $\tilde{G}^{\mathscr{R}}$. Suppose that $g_1\rho = g_2\rho$ for $g_1, g_2 \in G$. Then one may easily show that for any $(p,q) \in \mathbf{R} \cup \mathbf{R}^{-1}$ and any $x, y \in \tilde{G}^{\mathscr{R}} * G$, $xpy \notin G$ and $xqy \notin G$. By Proposition 3.2, $g_1 = g_2$.

Next, suppose that α and β are elements of $\tilde{G}^{\mathcal{R}}$ such that $(\alpha \tau)\rho = (\beta \tau)\rho$. Then there exist $x_1, \ldots, x_n, y_1, \ldots, y_n \in \tilde{G}^{\mathcal{R}} \bullet G$ and

$$(p_1,q_1),\ldots,(p_n,q_n)\in\mathbf{R}\cup\mathbf{R}^{-1}$$

giving a sequence

$$\alpha \tau = x_1 p_1 y_1 \tau \rightarrow x_1 q_1 x_2 \tau = x_2 p_2 y_2 \tau \rightarrow \cdots \rightarrow x_n q_n y_n \tau = \beta \tau$$

of elementary **R**-transitions connecting $\alpha \tau$ to $\beta \tau$. Since $r(\alpha \tau) = \alpha$ and $r(\beta \tau) = \beta$, by Proposition 3.3, it follows that

$$\alpha = r(\alpha \tau) = r(x_1 p_1 y_1 \tau) = r(x_1 q_1 y_1 \tau)$$

= $r(x_2 p_2 y_2 \tau) = \dots = r(x_n q_n y_n \tau) = r(\beta \tau) = \beta$.

We note that the inverse monoid $\tilde{G}^{\mathcal{R}}$ and the group G are embedded into the inverse monoid $\tilde{G}^{\mathcal{R}}_*$ via the maps

$$\tilde{G}^{\mathscr{R}} \to i_{\tilde{G}^{\mathscr{R}}}(\tilde{G}^{\mathscr{R}}) \to \psi(i_{\tilde{G}^{\mathscr{R}}}(\tilde{G}^{\mathscr{R}})) \subset \tilde{G}_{*}^{\mathscr{R}},$$

$$G \to i_{G}(G) \to \psi(i_{G}(G)) \subset \tilde{G}_{*}^{\mathscr{R}}.$$

Next, we will show that the inverse monoid $\tilde{G}_*^{\mathcal{R}}$ admits a semidirect product of a semilattice by a group.

LEMMA 3.5. Let \leq_S and \leq_T be the natural partial orders in inverse semigroups S and T, and let f be a homomorphism from S to T. If $a \leq_S b$ implies $f(a) \leq_T f(b)$. If f is injective and $f(a) \leq_T f(b)$ then $a \leq_S b$.

Proof. Notice that f preserves idempotent elements. If $a \leq_S b$ in S, then there exists an idempotent e in S such that a = eb. Now f(a) = f(e)f(b) and f(e) is an idempotent in T. This implies $f(a) \leq_T f(b)$.

Suppose that f is a monomorphism and suppose that $f(a) \leq_T f(b)$. Then f(a) = ef(b) for some idempotent e in T. This implies that $f(a) = f(a)f(a^{-1})f(b) = f(aa^{-1}b)$. Since f is injective, $a = (aa^{-1})b$ and hence $a \leq_S b$.

PROPOSITION 3.6. The inverse monoid $\tilde{G}_*^{\mathscr{R}}$ is E-unitary, and every element of $\tilde{G}_*^{\mathscr{R}}$ is beneath a unique element of G.

Proof. We first observe that every element $\alpha \rho$ of $\tilde{G}_*^{\mathscr{R}}$ with $\alpha \in \tilde{G}^{\mathscr{R}}$ is beneath a unique element $g\rho$ of $\tilde{G}_*^{\mathscr{R}}$ with $g \in G$. Suppose that $\alpha = \epsilon_{g_1} \epsilon_{g_2} \cdots \epsilon_{g_n} i(g)$ is an element of $\tilde{G}^{\mathscr{R}}$. By Lemma 3.1,

$$(\alpha \alpha^{-1}) \rho \cdot g \rho = (\alpha \alpha^{-1} g) \rho = \alpha \rho.$$

Since $(\alpha\alpha^{-1})\rho$ is an idempotent, we have $\alpha\rho \leq g\rho$. Now suppose that $\alpha\rho$ is bounded above by an another element $h\rho \in \tilde{G}_*^{\mathscr{R}}$ with $h \in G$. Then clearly $\epsilon_h\alpha$ is bounded above by $\iota(g)$ in the semigroup $\tilde{G}^{\mathscr{R}}$. Since $\alpha\rho \leq h\rho$, $(\epsilon_h\alpha)\rho \leq (\epsilon_hh)\rho = \iota(h)\rho$. By Lemma 3.5, $\epsilon_h\alpha \leq \iota(h)$ in the semigroup $\tilde{G}^{\mathscr{R}}$. Thus $\iota(g) = \iota(h)$ from Proposition 2.1 (iii).

Let $\alpha \rho = (\alpha_1 \alpha_2 \cdots \alpha_n) \rho = \alpha_1 \rho \cdot \alpha_2 \rho \cdots \alpha_n \rho \in \tilde{G}_*^{\mathscr{R}}$ with $\alpha_i \in \tilde{G}^{\mathscr{R}} \cup G$. Then by the remarks of the first paragraph, for each i there exists $g_i \in G$ such that $\alpha_i \rho \leq g_i \rho$. By the compatibility of the order, we have $\alpha \rho \leq (g_1 \cdots g_n) \rho$. This shows that every element in $\tilde{G}_*^{\mathscr{R}}$ is bounded above by an element of G.

Now suppose that $\alpha\rho$ is an element of $\tilde{G}_*^{\mathscr{R}}$ and is bounded above by the elements $g\rho, h\rho$ where $g, h \in G$. Then $r(\alpha)\rho \leq \alpha\rho \leq g\rho, h\rho$, where r is the retractive function on $\tilde{G}^{\mathscr{R}} * G$. Since $r(\alpha) \in \tilde{G}^{\mathscr{R}}$, by the remarks of the first paragraph, we conclude that $g\rho = h\rho$. This implies that every element in $\tilde{G}_*^{\mathscr{R}}$ is bounded above by a unique element of G.

Finally, we show that $\tilde{G}_*^{\mathscr{R}}$ is an *E*-unitary semigroup. Let $e\rho$ be an idempotent in $\tilde{G}_*^{\mathscr{R}}$ and $\alpha\rho\in\tilde{G}_*^{\mathscr{R}}$ such that $e\rho\leq\alpha\rho$. Then $(e\alpha)\rho$ is an idempotent $\tilde{G}_*^{\mathscr{R}}$. Pick an element g in G such that the element $\alpha\rho$

is bounded above by $g\rho$. Then $(e\alpha)\rho \leq \alpha\rho \leq g\rho$. Since $(e\alpha)\rho$ is an idempotent element, $(e\alpha)\rho \leq 1\rho$. Hence $g\rho = 1\rho$. This implies that $\alpha\rho$ is an idempotent element of $\tilde{G}_*^{\mathcal{R}}$. Therefore $\tilde{G}_*^{\mathcal{R}}$ is E-unitary.

THEOREM 3.7. The inverse monoid $\tilde{G}_*^{\mathcal{R}}$ is isomorphic to a semidirect product of the semilattice of idempotents of $\tilde{G}^{\mathcal{R}}$ by the group G.

Proof. Let E^* be the semilattice of idempotents of $\tilde{G}_*^{\mathscr{R}}$. Then the mapping defined by

$$G \times E^* \ni (g\rho, f\rho) \mapsto g\rho \cdot f\rho \cdot (g^{-1})\rho = (gfg^{-1})\rho \in E^*$$

is an action of G on E^* . Set $S = E^* \times G$. Then S becomes an inverse semigroup under the multiplication

$$(e\rho, g\rho)(f\rho, h\rho) = ((egfg^{-1})\rho, (gh)\rho).$$

Now, we establish that the mapping

$$\Phi: \tilde{G}_*^{\mathscr{R}} \ni \alpha \rho \mapsto ((\alpha \alpha^{-1})\rho, g\rho) \in S,$$

where $g\rho$ is the (unique) element of G bounding $\alpha\rho\in \tilde{G}_*^{\mathscr{R}}$, is an isomorphism between inverse semigroups. Suppose that

$$\Phi(\alpha\rho) = ((\alpha\alpha^{-1})\rho, g\rho) = ((\beta\beta^{-1})\rho, h\rho) = \Phi(\beta\rho)$$

for $\alpha \rho, \beta \rho \in \tilde{G}_*^{\mathscr{R}}$. Since $\alpha \rho \leq g \rho$ and $\beta \rho \leq h \rho$, we have

$$\alpha \rho = \alpha \rho \cdot \alpha^{-1} \rho \cdot g \rho = (\alpha \alpha^{-1}) \rho \cdot g \rho = (\beta \beta^{-1}) \rho \cdot h \rho = \beta \rho \cdot \beta^{-1} \rho \cdot h \rho = \beta \rho.$$

Thus Φ is injective. Let $(e\rho, g\rho) \in S$. Consider the element $(eg)\rho = e\rho \cdot g\rho$ in $\tilde{G}_*^{\mathscr{R}}$. Since $(eg)\rho = e\rho \cdot g\rho \leq 1\rho \cdot g\rho = g\rho$ and since $((eg)\rho) \cdot ((eg)\rho)^{-1} = e\rho$, the map Φ maps $(eg)\rho$ to $(e\rho, g\rho)$. Thus Φ is surjective.

Finally, we show that Φ is a homomorphism. Let $\alpha\rho$ and $\beta\rho$ be elements of $\tilde{G}_*^{\mathscr{R}}$, and let $g,h\in G$ such that $\alpha\rho\leq g\rho$ and $\beta\rho\leq h\rho$. Then $(\alpha\beta)\rho=\alpha\rho\cdot\beta\rho$ is bounded above by the (unique) element $(gh)\rho=g\rho\cdot h\rho$. Now we also have

$$(\alpha\beta\beta^{-1}\alpha^{-1})\rho = \alpha\rho \cdot (\beta\beta^{-1})\rho \cdot \alpha^{-1}\rho$$

$$= \alpha\rho \cdot (\beta\beta^{-1})\rho \cdot (\alpha^{-1}\alpha)\rho \cdot g^{-1}\rho$$

$$= \alpha\rho \cdot (\alpha^{-1}\alpha)\rho \cdot (\beta\beta^{-1})\rho \cdot g^{-1}\rho$$

$$= (\alpha\alpha^{-1})\rho \cdot \alpha\rho \cdot (\beta\beta^{-1})\rho \cdot g^{-1}\rho$$

$$= (\alpha\alpha^{-1})\rho \cdot (\alpha\alpha^{-1})\rho \cdot g\rho \cdot (\beta\beta^{-1})\rho \cdot g^{-1}\rho$$

$$= (\alpha\alpha^{-1})\rho \cdot g\rho \cdot (\beta\beta^{-1})\rho \cdot g^{-1}\rho$$

$$= (\alpha\alpha^{-1})\beta\beta^{-1}g^{-1}\rho.$$

This shows that Φ is a homomorphism.

Set

$$P := \{ (e\rho, g\rho) \in E(\tilde{G}^{\mathscr{R}}) \times G : (g^{-1}eg)\rho \in E(\tilde{G}^{\mathscr{R}}) \}.$$

COROLLARY 3.8. The map $\Phi \circ \psi$ maps $\tilde{G}^{\mathscr{R}}$ onto P, where Φ is the isomorphism in Theorem 3.7 and ψ is the natural embedding of $\tilde{G}^{\mathscr{R}}$ into $\tilde{G}^{\mathscr{R}}_*$ in Proposition 3.4. In particular, P is an inverse subsemigroup of $S = E^* \times G$.

Proof. Let $\alpha \in \tilde{G}^{\mathscr{R}}$ with $\alpha \leq i(g)$. Then $\alpha^{-1}\alpha \in E(\tilde{G}^{\mathscr{R}})$. By Lemma 3.1, it follows that

$$\begin{split} (g^{-1}\alpha\alpha^{-1}g)\rho &= g^{-1}\rho \cdot (\alpha\alpha^{-1}g)\rho \\ &= g^{-1}\rho \cdot \alpha\rho \\ &= (g^{-1}\alpha)\rho \\ &= (\alpha^{-1}\alpha)\rho \in E(\tilde{G}^{\mathscr{R}}). \end{split}$$

Therefore $\Phi \circ \psi(\tilde{G}^{\mathcal{R}}) \subset P$.

Conversely, suppose that $(e\rho, g\rho) \in P$. Then $e \in E(\tilde{G}^{\mathscr{R}})$ and $(g^{-1}eg)\rho = f\rho$ for some $f \in E(\tilde{G}^{\mathscr{R}})$. Since

$$(g^{-1}ei(1)gi(1))\rho = (g^{-1}egi(1))\rho = f\rho \cdot i(1)\rho = f\rho = (g^{-1}eg)\rho,$$

we have $(ei(g))\rho = (ei(1)gi(1))\rho = (eg)\rho$. This implies that

$$\Phi \circ \psi(e \imath(g)) = \Phi(e \imath(g) \rho) = \Phi((eg) \rho) = (e\rho, g\rho).$$

This completes the proof.

References

- [1] J.-C. Birget and J. Rhodes, Almost finite expansions of arbitrary semigroups, J. Pure Appl. Algebra **32** (1984), 239–287.
- [2] ______, Group Theory via Global Semigroup Theory, J. Algebra 120 (1989), 284-300.
- [3] K. Choi and Y. Lim, Inverse monoids of Möbius type, J. Algebra 223 (2000), 283-294.
- [4] _____, Birget-Rhodes Expansion of Groups and Inverse monoids of Möbius type, International J. of Algebra and Computation 12 (2002), no. 4, 525-533.
- [5] J. M. Howie, An introduction to semigroup theory, Academic Press, San Diego, 1976.
- [6] R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc. 126 (1998), 3481-3494.
- [7] J. Kellendonk and M. V. Lawson, Partial actions of groups, their globalizations, and E-unitary inverse semigroups, Preprint.

- [8] M. V. Lawson, Almost factorizsable inverse semigroups, Glasgow Math. J. 36 (1994), 97–111.
- [9] _____, The Möbius inverse monoid, J. Algebra 200 (1998), 428-438.
- [10] M. B. Szendrei, A note on Birget-Rhodes Expansion of Groups, J. Pure Appl. Algebra 58 (1989), 93–99.

KEUNBAE CHOI, DEPARTMENT OF MATHEMATICS EDUCATION, JEJU NATIONAL UNIVERSITY OF EDUCATION, JEJU 690-061, KOREA

E-mail: kbchoe@jejue.ac.kr

Yongdo Lim, Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea

E-mail: ylim@knu.ac.kr