Bull. Korean Math. Soc. 41 (2004), No. 4, pp. 709-721

PUNCTURED TORUS REPRESENTATIONS
USING THE GLUING METHOD

Hong CHAN KIM

ABSTRACT. A punctured torus X(1,1) is a building block of ori-
ented surfaces. In this paper we formulate the matrix presentations
of elements of the Teichmiiller space of a punctured torus using
the matrix presentations of a pair of pants £(0, 3) and the gluing
method.

Introduction

Let M be a compact connected smooth surface with x(M) < 0. Then
the equivalence classes of hyperbolic structures on M form a deformation
space T(M) called the Teichmiiller space.

Let m = m1(M) be the fundamental group of M. For a given hyper-
bolic structure on M, the action of 7 by deck transformation on the
universal covering space M of M determines a homomorphism 7= —
PSL(2,R) called the holonomy homomorphism and it is well-defined
up to conjugation in PSL(2,R). Thus the Teichmiiller space T(M) has
a natural topology which identified with an open subset of the orbit
space Hom(m, PSL(2,R))/PSL(2,R). Since holonomy homomorphisms
7 — PSL(2,R) are isomorphic to their images, the generators of 7 can
be presented by the conjugacy classes of matrices in PSL(2,R).

Let M = X(g,n) be a compact connected oriented surface with g-
genus and n-boundary components. Then M can be decomposed as a
disjoint union of g punctured tori ¥(1,1) and g — 2 + n pairs of pants
¥(0,3). Thus a punctured torus (1,1) and a pair of pants ¥(0,3)
are building blocks of an oriented surface M. The matrix presentations
of a pair of pants (0, 3) are classified in the preceding paper {5]. The

Received January 19, 2004.

2000 Mathematics Subject Classification: 57M50, 32G15.

Key words and phrases: punctured torus, hyperbolic structure, Teichmiiller space,
holonomy homomorphism.

The author gratefully acknowledges the support from a Korea University Grant.



710 Hong Chan Kim

purpose of this paper is to formulate the matrix presentations of elements
of the Teichmiiller space of a punctured torus £(1,1) using the matrix
presentations of ¥(0,3) and the gluing method.

In Section 1, we recall some preliminary definitions and describe the
relation between the deformation space (M) of (G, X)-structures on a
smooth manifold M and the orbit space Hom(w,G)/G. In Section 2, we
define the hyperbolic elements of SL(2,R) and PSL(2,R) and classify
the locations of fixed points and principal lines of hyperbolic elements.
In Section 3, we introduce the gluing method and calculate the matrix
presentations of elements of the Teichmiiller space T(X(1,1)).

1. (G, X)-structures on a smooth manifold M

Suppose a connected Lie group G acts on a smooth n-manifold X.
A (G, X)-structure on a connected smooth n-manifold M is a maximal
collection of coordinate charts {(Uy, %)} such that

1. G acts strongly effectively on X ; i.e. if g1,92 € G agree on a
nonempty open set of X, then g; = go.

2. {U,} is an open covering of M.

3. Por each o, 1, : U, — X is a diffeomorphism onto its image.

4. The change of coordinates is locally-(G, X) ; i.e. If (Uy,%q) and
(Ug, ) are two coordinate charts with U, N Ug # 0, then the
restriction of transition function g o ! to any connected com-
ponent of ¥, (U, NUpg) is a restriction of a (G, X)-transformation
ge€a@qG.

Let H2 = {z € C | Im(2) > 0} be the upper half complex plane. Then

SL(2,R) acts on H? by

a b az+b
(1.1) A-z—(c d)'z—cz—i-d'

Since we have A-z = (—A) -z for any A € SL(2,R) and z € H?, the Lie
group PSL(2,R) = SL(2,R)/+T acts strongly effectively on H2.

DEFINITION 1.1. The (PSL(2,R), H?)-structures on a smooth sur-
face M is called hyperbolic structures on M.

A manifold M with a (G, X)-structure is called a (G, X)-manifold.
Let M and N be (G, X)-manifolds and f : M — N a smooth map.
Then f is called a (G, X)-map if for each coordinate chart (U, 4y) on
M and (V,%y) on N, the composition ¢y o f oyt : ¢y (f~HV)NU) —
Yy (f(U)NV) is locally-(G, X).
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The following Development Theorem is the fundamental fact about
(G, X)-structures. See Thurston’s book (7] for details.

THEOREM 1.2. Let p : M — M denote a universal covering map
of a (G,X)-manifold M, and w the corresponding group of covering
transformations.

1. There exist a (G, X)-map dev : M — X (called the develop-
ing map) and homomorphism h : 7 — G (called the holonomy
homomorphism) such that for each v € w the following diagram
commutes :

M dev X

dl [+
M — X
dev
2. Suppose (dev’,h') is another pair satisfying above conditions.
Then there exists a (G, X )-transformation g € G such that
dev' =godev and K =i40h

where 1y : G — G denotes the inner automorphism defined by g ;
that is, h'(y) = (tzoh)(y) =goh(y)og™!:

M dev X g X
vl lh(v) lh’(v)
M X X
dev g

By Theorem 1.2, the developing pair (dev,h) is unique up to the
G-action by composition and conjugation respectively.

Let M be a smooth manifold. Consider a pair (f, N) where N is a
(G, X)-manifold and f : M — N is a diffeomorphism. We say two pairs
(f,N) and (f’, N') are equivalent if there exists a (G, X)-diffeomorphism
g : N — N'such that go f is isotopic to f’. The set of equivalence classes
of all pairs (f, N) is called the deformation space of (G, X)-structures
on M and denoted by ©(M).

DEFINITION 1.3. Let M be a connected smooth surface. The defor-
mation space of hyperbolic structures on M is called the Teichmailler
space and denoted by T(M).

The deformation space D (M) is closely related to Hom(m,G)/G the
orbit space of homomorphisms ¢ : # — G. Suppose M = £(g,n) is a
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compact oriented smooth surface with g-genus, n-boundary components.
Then 7 admits 2¢g + n generators Ay, By, ..., Aq, By, C1,...,Cp with a
single relation

R=Cp- - C1B;'A;'ByA, -+ B 'AT'BiA; = 1.

From the correspondence of the homomorphism ¢ : m — G to the image
of generators, Hom(w,G) may be identified with the collection of all
(2g + n)-tuples (A1, B, ..., Aq, By, C1,...,Cn) C G*9*™ elements of G
satisfying R(A1, By,...,Aq, By, C1,...,Cn) = 1.

Taking the holonomy homomorphism of a (G, X)-structure defines a
map

hol : D(M) — Hom(7,G)/G

which is a local diffeomorphism. See Goldman [2] and Johnson (3] for
details. For the hyperbolic structures on M, the map hol on T(M) is a
diffeomorphism onto its image.

THEOREM 1.4. Let M be a compact oriented surface with x(M) =
2 —2g —n < 0. Then hol : ¥(M) — Hom(w, PSL(2,R))/PSL(2,R) is
an embedding onto a real analytic manifold of dimension 6g — 6 + 3n.

Therefore the Teichmiiller space T(M) is diffeomorphic to R69—6+3"
and an element of T(M) will be identified with a conjugacy class of
Hom(w,PSL(2,R)). In the next section, we shall explicitly formulate
the algebraic presentation of elements of T(M) for a punctured torus
M =13%(1,1).

2. Matrix presentations of a punctured torus

An element A of SL(2, R) is said to be hyperbolic if A has two distinct
real eigenvalues. Thus A is hyperbolic if and only if tr(4)2 > 4. A
hyperbolic element A can be expressed by the diagonal matrix

(2.1) ( O‘(;l g )

via an SL(2, R)-conjugation with o? > 1.

An element A of PSL(2,R) is said to be hyperbolic if A has two
distinct fixed points on OHZ2. Since the absolute value of trace is still
defined, A is hyperbolic if and only if |tr(A)| > 2.

The following theorem is due to Kuiper [6].
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THEOREM 2.1. Suppose that M is a compact connected oriented
hyperbolic surface. Let the holonomy group I' = h(w) C PSL(2,R)
be the image of the holonomy homomorphism. Then every nontrivial
element of T is hyperbolic.

Let M = X¥(g,n) be a compact connected oriented surface with g-
genus and n-boundary components. If x(M) = 2 —2g ~n < 0, then
there exist 29 — 3 + n nontrivial homotopically-distinct disjoint simply-
closed curves on M such that they decompose M as the disjoint union
of g punctured tori ¥(1,1) and g — 2 +n pairs of pants (0, 3). Thus the
punctured torus 3(1,1) and a pair of pants £(0,3) are building blocks
of an oriented surface M. For more detail, see Wolpert’s paper [8].

The matrix presentations of the Teichmiiller space of a pair of pants
3(0,3) are classified in the preceding paper [5]. Using the matrix pre-
sentation of ¥(0, 3) and the gluing method, we shall find expressions of
the elements of the Teichmiiller space T(X(1,1)) of a punctured torus.

For a hyperbolic manifold M, let @ = dev(M) be the developing
image in H2. For a non-trivial element A of the holonomy group I' C
PSL(2,R), the translation length ¢(A) is defined by

£(4) = inf dp(z, A(2))

where dp is the Poincaré metric on Q. From Beardon’s book [1], we get

the relation

tr(A)
2

Since cosh™(t) = log(t + v#2 —1) and |tr(4)| = a + a! for o > 1,
Equation (2.2) becomes

A -1 242+ a2
L <2_+_2a_ N \/ﬂ_itf_ B 1) ~ log(a).

Therefore the Fenchel-Nielsen’s length parameter £ can be defined as
(2.3) £(A) = log(a?)

for a hyperbolic element A € PSL(2,R) with o2 > 1.

The principal line of a hyperbolic element A € PSL(2,R) is the A-
invariant unique geodesic in H? and it is the line joining the repelling
and attracting fixed points of A.

We now consider the location of the principal line of A and the rela-
tions of entries of A.

(2.2)

’ = cosh(-g—(g—l—)).
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PROPOSITION 2.2. Suppose A = + ( CCL 2

perbolic transformation of H? and z,, z, are finite (not infinite) fixed
points of A. Then 2z, < zr if and only if (a+d)c <0.

) € PSL(2,R) is a hy-

Proof. Since z,, z, are the fixed points of the hyperbolic transforma-

tion A(z) = ‘Cljidb, they are the roots of the equation

(2.4) c2+(d—a)z—b=0.

First we claim that ¢ # 0. If c = 0, then 1 = det(A4) = ad. Thus d = a~1
and A(z) = a2 + ab. This yields that oo is a fixed point of A(z) since
a # 0. It contradicts the assumption that both fixed points are finite.
Since ¢ # 0, the roots zq,, 2, of the Equation (2.4) can be expressed by

(2.5) S Rl E VAR ik
@ 2c )

Let w be the mid point of the fixed points z, and z, ; i.e.
w= (24 +2r)/2=(a—d)/(2c).

Then the condition 2z, < z. is equivalent to A(w) < w. For an easy
understanding, see Figure 1. We can compute

Aw)—w = a(%5d) +b (a—d)

c(az;cd)+d_ 2c
_ a(a—d)+2bc_(a——d _(a+d)?*—4
B (a+d)e 2¢ )_ 2(a+d)c

Since (a + d)? > 4, it proves z, < z- if and only if (a+d)c<0. O

THEOREM 2.3. Suppose A € PSL(2,R) is a hyperbolic transforma-
tion of H? with the finite fixed points zq,z,. Then 0 < z, < z. if and
only if (a+d)c<0,(a—d)c>0andbc<O0.

Proof. Since the finite fixed points z,, 2, are the roots of the Equation
(2.4), we get the relations

~d ~b
(2.6) 2o+ 2 = aT and z4 -2 = -

It proves z, > 0 and 2z, > 0 if and only if (a —d)c > 0 and be < 0.
By the Proposition 2.2, we can deduce 0 < z, < 2z, if and only if
(a+d)c<0,(a—d)c>0and bec< 0 O
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A

&

0 Zq A(?.U) 1,IU 2y
FicuRE 1. The principal line with 0 < 2z, < 2, < o0

COROLLARY 2.4. Suppose A € PSL(2,R) is a hyperbolic transfor-
mation of H? with the finite fixed points z4,2,. If 0 < 24 < z, then
a? < d? and bd > 0.

Proof. From the Theorem 2.3, we have the relations (¢ —d) ¢ > 0 and
(a+d)c < 0. Thus (a — d)(a + d)c® = (a? — d?)c? < 0 implies a? < d2.
Since z, < zr, the image of the origin under A should be positive as in
the Figure 1. That means A(0) = b/d > 0. Thus we have bd > 0. O

REMARK 2.5. The image of infinity under A is just less than z,. That
means the sign of A(co) can be positive, zero, or negative.

THEOREM 2.6. Suppose A € PSL(2,R) is a hyperbolic transforma-
tion of H? with the finite fixed points z4,z. Then z, <0 < z, if and
only if be >0,ac<0andbd < 0.

oo

A

F1GURE 2. The principal line with z, < 0 < 2,

Proof. Suppose z, < 0 < z.. From the Equation 2.6, we can get the
relation 2, - 2, < 0 if and only if bc¢ > 0. The the images of the origin
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and infinity under A should be negative as in the Figure 2. That means
A(0) = b/d < 0 and A(00) = a/c < 0. Thus we have bd < 0 and ac < 0.
Conversely, the relations bc > 0 and bd < 0 derive ¢d < 0. Thus we get
(a+d)c < 0, equivalently z, < z.. The fact bc < 0 implies 2, - 2z < 0.
Thus we can conclude z, < 0 < z,. O

3. Matrix presentations of a punctured torus 3(1,1)

Recall that a punctured torus X(1,1) is a torus with a hole. Suppose
¥(1,1) is equipped with a hyperbolic structure. Since the holonomy
homomorphism is isomorphic to its image, the fundamental group = of
£(1,1) will be identified with

7= (A B,CePSL(2,R)|R=CB'A7'BA=1).

>

FIGURE 3. A punctured torus M = X(1,1)

Let A, B,C € PSL(2,R) represent elements of the fundamental group
of M as in Figure 3. For the orientations of loops A, B, and C, see Keen’s
paper [4].

We will find the expression of the generators A, B and C of 7 in terms
of SL(2,R) instead of PSL(2,R) because SL(2,R) is easier to compute
than PSL(2, R).

Let Cy,C2,Cs € SL(2,R) represent the boundary components of a
pair of pants 3(0,3) as in Figure 4. Then the fundamental group 7 of
¥(0, 3) is identified with

= (C1,C2,C3 € SL(2,R) | R=C3CoCy =1 ).
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C

Cs Cs

FIGURE 4. A pair of pants M = X(0, 3)

Suppose two boundary components Cj, Cy of a pair of pants (0, 3)
have the same translation lengths ; i.e. £(C1) = £(C2). Then a punctured
torus can be obtained by gluing two boundaries Cj, Cz of a pair of pants
%(0,3). By the orientations of boundary components C; and Cp, the
boundary C} is identified with +C5 1 up to conjugate. For an easy un-
derstanding, see the Figure 5. Thus there exists a matrix Q € SL(2,R)
such that C1 = Q~1C;'Q or C1 = Q71(—-C;H)Q.

Cs

FIGURE 5. Ghiing boundary components C; with C5 1

Let ), 1 be the eigenvalues of Cy, Cy respectively with A2 > 1, 2 > 1.
Since £(Cy) = log(\?) and £(C3) = log(u?), the condition ¢(C1) = £(C2)
implies A = g or A = —p. Thus €4 = Q‘ICQIQ if and only if A = u
and C; = —Q~1C;'Q if and only if A = —p.

THEOREM 3.1. Let C1,C>,C3 € SL(2,R) be generators of the fun-
damental group of a pair of pants ¥(0,3) with £(C}) = £(C3).
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1. IfQ is a hyperbolic matrix in SL(2,R) with C, = Q‘nglQ, then
A=Q, B :=C 1 ¢ := Cj are generators of the fundamental
group of a punctured torus %(1,1).

2. If Q is a hyperbolic matrix in SL(2,R) with C; = —Q7C;'Q,
then A :=Q, B := —Cz_l, C := —Cj5 are generators of the funda-
mental group of a punctured torus £(1,1).

Proof. Suppose C; = Q~1C51Q. If we define A=Q, B=C;*, C =
C3, then we obtain CB~1A™1BA = C30:Q71C5'Q = C3C,Cy = 1.

Suppose C; = —Q~1C,'Q. Similarly let A = Q, B = ~C;', C =
—C3, then CB™A™1BA = (—C3)(-C2)Q~ (-C;1Q = C3C2Cy = 1.
Thus both cases, A, B, C form generators of the fundamental group of
a punctured torus ¥(1,1). O

Now we find the matrix presentations of the Teichmiiller space of a
punctured torus X(1,1) with respect to those of a pair of pants 3(0, 3).
Since the matrices C, Cy, C3 € SL(2, R) are hyperbolic and represented
up to conjugate, without loss of generality, we can assume that Cs is a
diagonal matrix. :

THEOREM 3.2. The following matrices C1, Co, C3 € SL(2,R) with
(31) a<0, A>1, p2>1 and (—a)(u®—1) > 2ul+ A+ 2171

form the generators of fundamental group of a pair of pants %(0, 3).
(3.2)

. a 1 _({pm O
Cl—(—(a—)\)(a—)\“l) —a+)\+)\‘1)’ Cz—<0 u“l)’

and

o pM=a+ A AT -
(3.3) Cy = ( ,f—l(a il,\)(a—A‘l) aﬁ >
]

Proof. See Kim’s paper [5 O

The conditions in (3.1) are from the discreteness of holonomy group and
the locations of principal lines of Cy,Cs, and C3. See the Figure 6, for
the locations of principal lines. We can easily check the relations of fixed
points by the conditions in the Theorem 2.3 and Corollary 2.4.

Now we shall find a matrix Q € SL(2,R) such that C; = Q~1C; Q.
Let C1, Co € SL(2,R) be hyperbolic matrix in (3.2). The conditions
6(C1) = 6(Cp) and Cy = Q71C;'Q imply A = p. Let Q = ("” y).

z w
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C
Co) C, m
Za Zr wa w’l‘

0

F1GURE 6. The locations of the principal lines of Cy, Csy, Cs

After some calculations, the relation QCy = C5 1@ induces
r=(a—-ANy and z=(a—A"Hw.

Since 1 = det(Q) = (a — Nyw — (@ — A"Hyw = (A7 — N)yw, we get
the relation w = (A~ — \)~1y~1. Therefore the following @ € SL(2,R)
satisfies the condition C1 = Q71Cy 1Q;

(3.4) Q= <((C¢Lz,\_—1)i)f ,\y 1) .

-3y (OI-2y

PROPOSITION 3.3. Suppose we have another Q € SL(2,R) such that
Cy = _Q‘lcng. Then there exists a diagonal matrix D € SL(2,R) such
that Q = DQ.

Proof. The condition C; = Q~'Cy 9 = Q~Ccy 1Q derives that
(@Q™HC;! = C;7HQQR™). Since C;! is a diagonal matrix, the com-
mutativity of (QQ™!) with Cy ! implies (QQ~1) should be diagonal.
Therefore there exists D € SL(2,R) such that Q = DQ. O

Let D € SL(2,R) be a diagonal matrix with entries D1; = z and
Dyy = z7!. Then DQ is the same shape of matrix as in (3.4), just
replaced y to zy. Actually the matrix @ in (3.4) can be represented by
composition of two matrices ;

(y O (a—X) 1
(3.5) Q= (0 y—1> < Ec;i;lg (1_)\/\ )> .

Now we shall show that the matrix @ in (3.4) is hyperbolic.

PROPOSITION 3.4. Let Q be the matrix in (3.4). Then

1. tr(Q) > 2 if and only if y < 0.
2. tr(Q) < -2 ifand only if y > 0.
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Proof. Recall from the Theorem 3.2, we have the conditions a < 0
and X > 1. Suppose y < 0. Then we have (a — A)y > 0 and (—1—_3‘;\72—)% > 0.
Thus

Al S A2 —a)
1-M)y — A2 -1
Conversely, suppose tr(Q) > 2. Since (a — A) < 0 and (IT/\,\T) < 0, the

sign of y should be negative. Similarly we can show y > 0 if and only
if tr(Q) <2. O

tr(Q) = (a— Ny + > 2.

Since @ is hyperbolic, from the Theorem 3.1, we have the following
main theorem.

THEOREM 3.5. Suppose the hyperbolic matrices in SL(2,R)

a— Ay Y -1
(3.6) A= (((a)\—l))l A l) , B= ()\0 g) )
)y

1-22)y  (1-»?

and

A —a+A+A7Y) =)
(3.7) C= ( )\—1((a ~Ma- ,\—1)) aX )

satisfy a < 0, A > 1,y # 0, and (—a)(A\2 — 1) > 3X\ + A~L. Then
{A,B,C} and {A,—B,C} forms generators of the fundamental group
of a punctured torus ¥(1,1).

Proof. First let p = A, then |u| = A > 1. Thus the inequality in
(3.1) becomes (—a)(A\2 — 1) > 3XA + A~ Suppose C; = Q7'C;'Q.
Then g = A. From Theorem 3.1, Q@ = A, 02_1 = B,(C3 = C are
generators of the fundamental group of a punctured torus X(1,1). If
C1=-Q7'C;'Q, then p = ~Xand Q = A, -C;' = —-B, -C3 = C
are generators. Since the replacement of the parameter p in C3 to A
and that of 1 in —C3 to —A induce the same matrix C. Thus the matrix
C is invariant both cases. Therefore {A, B,C} and {A,—B,C} forms
generators of the fundamental group 7 of a punctured torus £(1,1). O

See the Figure 7, for the locations of principal lines of A, B, and C.
Finally we have the Main Theorem.

THEOREM 3.6. The equivalent classes of matrices [A], [B] and [C] €
PSL(2,R) are representations of elements of the Teichmiiller space of a
punctured torus %(1,1).
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By C

Za 0 Zr  Wq Wy
FIGURE 7. The locations of the principal lines of A4, B, C

Proof. Since above hyperbolic matrices A, B and C € SL(2,R) in
Theorem 3.5 form generators of fundamental group 7 of X(1,1), these
equivalent classes of matrices [A], [B] and [C] € PSL(2,R) represent
conjugacy classes of the orbit space Hom(w, PSL(2,R))/PSL(2,R). O
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